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Abstract: We calculate the most interesting rare and CP-violating K and B decays in the

Littlest Higgs model with T-parity. We give a collection of Feynman rules including v2/f2

contributions that are presented here for the first time and could turn out to be useful also

for applications outside flavour physics. We adopt a model-independent parameterization

of rare decays in terms of the gauge independent functions Xi, Yi, Zi (i = K,d, s), which

is in particular useful for the study of the breaking of the universality between K, Bd and

Bs systems through non-MFV interactions. Performing the calculation in the unitary and

’t Hooft-Feynman gauge, we find that the final result contains a divergence which signals

some sensitivity to the ultraviolet completion of the theory. Including an estimate of this

contribution, we calculate the branching ratios for the decays K+ → π+νν̄, KL → π0νν̄,

Bs,d → µ+µ−, B → Xs,dνν̄, KL → π0`+`− and B → Xs,d`
+`−, paying particular attention

to non-MFV contributions present in the model.

The main feature of mirror fermion effects is the possibility of large modifications in rare K

decay branching ratios and in those B decay observables, like Sψφ and As
SL, that are very

small in the SM. Imposing all available constraints we find that the decay rates for Bs,d →
µ+µ− and B → Xs,dνν̄ can be enhanced by at most 50% and 35% relative to the SM values,

while Br(K+ → π+νν̄) and Br(KL → π0νν̄) can be both as high as 5 · 10−10. Significant

enhancements of the decay rates KL → π0`+`− are also possible. Simultaneously, the CP-

asymmetries Sψφ and As
SL can be enhanced by an order of magnitude, while the electroweak

penguin effects in B → πK turn out to be small, in agreement with the recent data.
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1. Introduction

Rare and CP-violating K and B meson decays will hopefully provide in the coming years

a new insight into the origin of the hierarchy of quark masses and their hierarchical flavour

and CP-violating interactions. While the presently available data on these decays give a

strong indication that the CKM matrix [1] and more generally minimal flavour violation

(MFV) [2 – 4], encoded entirely in Yukawa couplings of quarks and leptons, is likely to be the

dominant source of flavour and CP violation, there is clearly still room left for contributions

governed by non-MFV interactions, in particular those with new CP-violating phases.

A prime example of a model with non-MFV interactions is a general MSSM in which

non-MFV contributions originate in squark mass matrices that are not aligned with the
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quark mass matrices. Extensive analyses of the impact of such non-MFV contributions

on particle-antiparticle mixing and rare K and B decays in the MSSM with and without

R-parity have been presented in the literature. The basic strategy proposed in [5] is to

constrain the non-diagonal entries (δij)AB of the squark mass matrices given in the so-

called super-CKM basis, in which all neutral gauge interactions and the quark and lepton

mass matrices are flavour diagonal. These studies are complicated by the fact that in

addition to (δij)AB also new fermion and scalar particle masses appear as free parameters.

The situation in this respect may improve significantly in the coming years provided the

supersymmetric particles will be discovered at LHC and their masses measured at LHC

and later at ILC.

While supersymmetry [6] appears at present to be the leading candidate for new physics

beyond the Standard Model (SM), Little Higgs models [7, 8] appear as an interesting al-

ternative. Also here, new particles below 1TeV, or slightly above, with significant con-

tributions to electroweak precision studies and FCNC processes are present. Among the

most popular Little Higgs models is the so-called Littlest Higgs model [9]. In this model

in addition to the SM particles, new charged heavy vector bosons (W±
H ), a neutral heavy

vector boson (Z0
H), a heavy photon (AH), a heavy top quark (T+) and a triplet of scalar

heavy particles (Φ) are present.

In the original Littlest Higgs model (LH) [9], the custodial SU(2) symmetry, of fun-

damental importance for electroweak precision studies, is unfortunately broken already at

tree level, implying that the relevant scale of new physics, f , must be at least 2 − 3TeV

in order to be consistent with electroweak precision data [10 – 16]. As a consequence, the

contributions of the new particles to FCNC processes turn out to be at most 10−20% [17 –

21], which will not be easy to distinguish from the SM due to experimental and theoretical

uncertainties. In particular, a detailed analysis of particle-antiparticle mixing in the LH

model has been published in [17] and the corresponding analysis of rare K and B decays

has recently been presented in [21].

More promising and more interesting from the point of view of FCNC processes is

the Littlest Higgs model with a discrete symmetry (T-parity) [22] under which all new

particles listed above, except T+, are odd and do not contribute to processes with external

SM quarks (T-even) at tree level. As a consequence, the new physics scale f can be lowered

down to 1TeV and even below it, without violating electroweak precision constraints [23].

A consistent and phenomenologically viable Littlest Higgs model with T-parity (LHT)

requires the introduction of three doublets of “mirror quarks” and three doublets of “mirror

leptons” which are odd under T-parity, transform vectorially under SU(2)L and can be

given a large mass. Moreover, there is an additional heavy T− quark that is odd under

T-parity [24].

In the first phenomenological study of FCNC processes in the LHT model by Hubisz

et al. [25], the impact of mirror fermions on the neutral meson mixing in the K, B and D

systems has been studied in some detail. As described in that paper, in the LHT model

there are new flavour violating interactions in the mirror quark sector, parameterized by

two CKM-like mixing matrices VHd and VHu, relevant for processes with external light

down-type quarks and up-type quarks, respectively. It turns out that the spectrum of
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mirror quarks must be generally quasi-degenerate, but there exist regions of parameter

space, where only a loose degeneracy is necessary in order to satisfy constraints coming

from particle-antiparticle mixing.

In [26] we have confirmed the analytic expressions for the effective Hamiltonians for

K0−K̄0, B0
d−B̄0

d and B0
s−B̄0

s mixings presented in [25] and we have generalized the analysis

of these authors to other quantities that allowed a deeper insight into the flavour structure of

the LHT model. While the authors of [25] analyzed only the mass differences ∆MK , ∆Md,

∆Ms, ∆MD and the CP-violating parameter εK , we included in our analysis also other

theoretically cleaner quantities: the CP asymmetries ACP(Bd → ψKS), ACP(Bs → ψφ)

and Ad,s
SL , and the width differences ∆Γd,s. We have also calculated Br(B → Xs,dγ) and the

corresponding CP asymmetries. Moreover we emphasized that while the original LH model

belongs to the class of models with MFV, this is certainly not the case of the LHT model

where the presence of the matrices VHd and VHu in the mirror quark sector introduces new

flavour and CP-violating interactions that could have a very different pattern from the ones

present in the SM.

The main messages of our analysis in [26] are as follows:

• The analysis of the mixing induced CP asymmetries ACP(Bd → ψKS) and ACP(Bs

→ ψφ) illustrates very clearly that with mirror fermions at work these asymmetries do

not measure the phases −β and −βs of the CKM elements Vtd and Vts, respectively.

• This has two interesting consequences: first, the possible “discrepancy” between the

values of sin 2β following directly from ACP(Bd → ψKS) and indirectly from the usual

analysis of the unitarity triangle involving ∆Md,s, εK and |Vub/Vcb| can be avoided

within the LHT model. Second, the asymmetry ACP(Bs → ψφ) can be significantly

enhanced over the SM expectation ∼ 0.04, so that values as high as 0.3 are possible.

Moreover, the asymmetry As
SL can be enhanced by an order of magnitude.

• We also found that the usual relation between ∆Md/∆Ms and |Vtd/Vts| characteristic

for all models with MFV is no longer satisfied.

• Calculating Br(B → Xsγ) in the LHT model for the first time we have found that in

spite of large effects in ∆F = 2 processes considered in [25, 26], it can be modified by

at most ±4% relative to the SM value [27, 28]. This is welcome as the SM branching

ratio agrees well with the data. Also new physics effects in B → Xdγ and in the CP

asymmetries in both decays are at the level of a few percent of the SM values.

The beauty of the LHT model, when compared with other models with non-minimal

flavour violating interactions, like general MSSM, is a relatively small number of new

parameters and the fact that the local operators involved are the same as in the SM.

Therefore the non-perturbative uncertainties, present in certain quantities already in the

SM, are the same in the LHT model. Consequently the departures from the SM are entirely

due to short distance physics that can be calculated within perturbation theory. In stating

this we are aware of the fact that we deal here with an effective field theory whose ultraviolet
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completion has not been specified, with the consequence that at a certain level of accuracy

one has to worry about the effects coming from the cut-off scale Λ ∼ 4πf .

As pointed out recently in [21], such effects are signaled by left-over logarithmic di-

vergences in the final result for FCNC amplitudes and they appear as poles 1/ε when

dimensional regularization is used. It turns out that such divergences are absent in particle-

antiparticle mixing and B → Xs,dγ decays both in the LH and the LHT model. On the

other hand, they are present in Z0-penguin diagrams in the LH model considered in [21].

As we will see in the present paper, the imposition of T-parity eliminates such divergences

from the T-even sector as the diagrams containing these divergences are forbidden by T-

parity. However, we find that the mirror fermion contributions to ∆F = 1 processes contain

such logarithmic divergences and their effects on rare decays have to be taken into account

following the steps of [21].

In the present paper we extend our analysis of [26] to include all prominent rare K

and B decays. In particular we calculate the LHT contributions from both T-even and

T-odd sectors to the one-loop functions X, Y and Z [29] that encode the short distance

contributions to the rare decays in question. The new properties of these functions relative

to MFV are:

• They are complex quantities, as in the phenomenological analysis in [30], while in

contrast to the real X, Y and Z of MFV.

• They are different for K, Bd and Bs systems in contrast to [30], where these functions

were the same for the three systems in question. Thus in the present model we deal

really with nine short distance functions. But as we calculate them in a specific model,

interesting correlations between observables in rare K, Bd and Bs decays are still

present, although their structure differs from the correlations in MFV models [31 –

33] and in the phenomenological non-MFV analysis in [30].

Our paper is organized as follows. In section 2 we review those ingredients of the LHT

model that are of relevance for our analysis. In particular we summarize in an appendix

the relevant Feynman rules that go beyond those presented in [25, 34, 35]. Section 3 is

devoted to the master formulae for rare decays in models with non-MFV interactions. This

presentation goes beyond the LHT model and the formulae given in this section are general

enough to be used in other models that contain non-MFV contributions. This section is

basically a generalization of the formulae in [30] to include the breakdown of universality

in the functions X, Y and Z as mentioned above. In section 4 we calculate the new

contributions to X, Y and Z coming from the T-even sector. The results from the analysis

of the LH model in [21] were very helpful in obtaining these results. In section 5, the most

important section of our paper, we calculate the T-odd contributions to X and Y in the ’t

Hooft-Feynman and unitary gauge, obtaining a gauge invariant result for these functions.

Similarly to [21] we identify logarithmic divergences that are gauge independent. We recall

the interpretation of these divergences and we analyze their impact on the functions X and

Y in section 6. In section 7 we calculate the function Z that contributes to the B → Xs`
+`−

decay. In section 8 we study the decay KL → π0`+`−. The benchmark scenarios for our
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numerical analysis are described in section 9. In section 10, the numerical analysis of the

relevant branching ratios including T-even and T-odd contributions is presented in detail.

Of particular interest is the pattern of the violations of several MFV relations [31 – 33] that

can be tested experimentally one day. This analysis takes into account the constraints

found from the analysis of ∆F = 2 processes and B → Xsγ presented in [26] and from

Br(B → Xs`
+`−) calculated here. It can be considered as the first global analysis of

FCNC processes in the LHT model. In this section we also comment on B → πK decays.

In section 11 we conclude our paper with a list of messages resulting from our analysis

and with a brief outlook. Few technical details and the Feynman rules can be found in the

appendices.

2. General structure of the LHT model

2.1 Gauge and scalar sector

The original Littlest Higgs model [9] is based on a non-linear sigma model describing the

spontaneous breaking of a global SU(5) down to a global SO(5). This symmetry breaking

takes place at the scale f ∼ O(TeV) and originates from the vacuum expectation value

(VEV) of an SU(5) symmetric tensor Σ, given by

Σ0 ≡ 〈Σ〉 =







02×2 0 12×2

0 1 0

12×2 0 02×2






. (2.1)

The generators T a of the unbroken SO(5) symmetry fulfill T aΣ0 + Σ0(T
a)T = 0,

whereas the broken generators Xa of SU(5)/SO(5) satisfy XaΣ0 − Σ0(X
a)T = 0. The

symmetry breaking can thus be considered as a Z2 automorphism under which T a 7→ T a

and Xa 7→ −Xa. This automorphism is the basic motivation for the way T-parity is

implemented, as discussed later.

The mechanism for this symmetry breaking is unspecified, therefore the Littlest Higgs

model is an effective theory, valid up to a scale Λ ∼ 4πf . From the SU(5)/SO(5) breaking,

there arise 14 Nambu-Goldstone bosons χa which are described by the “pion” matrix Π,

given explicitly by

Π = χaXa =























−ω0

2 − η√
20

−ω+
√

2
−iπ+

√
2

−iφ++ −iφ+

√
2

−ω−

√
2

ω0

2 − η√
20

v+h+iπ0

2 −iφ+

√
2

−iφ0+φP
√

2

iπ−

√
2

v+h−iπ0

2

√

4/5η −iπ+
√

2
v+h+iπ0

2

iφ−− iφ−

√
2

iπ−

√
2

−ω0

2 − η√
20

−ω−

√
2

iφ−

√
2

iφ0+φP
√

2
v+h−iπ0

2 −ω+√
2

ω0

2 − η√
20























. (2.2)

Here, H = (−iπ+/
√

2, (v + h + iπ0)/2)T plays the role of the SM Higgs doublet, i. e. h is

the usual Higgs field, v = 246GeV the Higgs VEV, and π±, π0 are the Goldstone bosons

associated with the spontaneous symmetry breaking SU(2)L×U(1)Y → U(1)em. The fields
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η and ω are additional Goldstone bosons, and Φ is a physical scalar triplet, as described

below.

The low energy dynamics of the symmetric tensor Σ is then described by

Σ = eiΠ/fΣ0e
iΠT /f ≡ e2iΠ/fΣ0 . (2.3)

An [SU(2)×U(1)]1×[SU(2)×U(1)]2 subgroup of the SU(5) global symmetry is gauged,

with the generators

Qa
1 =

1

2







σa 0 0

0 0 0

0 0 0






, Y1 =

1

10
diag(3, 3,−2,−2,−2) ,

Qa
2 =

1

2







0 0 0

0 0 0

0 0 −σa∗






, Y2 =

1

10
diag(2, 2, 2,−3,−3) , (2.4)

and the corresponding gauge bosons W aµ
1 , Bµ

1 , W aµ
2 , Bµ

2 . Having the Z2 automorphism

T a 7→ T a and Xa 7→ −Xa in mind, one implements T-parity by assigning a symmetry

transformation to all fields, such that the theory is symmetric under T-parity. A natural

way to define the action of T-parity on the gauge fields is

W a
1 ↔ W a

2 , B1 ↔ B2 . (2.5)

In other words, the action of T-parity exchanges the two SU(2) × U(1) factors. An imme-

diate consequence of this definition is that the gauge couplings of the two SU(2) × U(1)

factors have to be equal.

The gauge boson T-parity eigenstates are given by

W a
L =

W a
1 + W a

2√
2

, BL =
B1 + B2√

2
(T-even), (2.6)

W a
H =

W a
1 − W a

2√
2

, BH =
B1 − B2√

2
(T-odd), (2.7)

where “L” and “H” denote “light” and “heavy”, respectively.

Now, the VEV Σ0 breaks the gauge symmetry to the diagonal T-even SU(2) × U(1),

which is identified with the SM gauge group. The breaking SU(2)L × U(1)Y → U(1)em
then takes place via the usual Higgs mechanism. Finally, the mass eigenstates are given at

O(v2/f2) by

W±
L =

W 1
L ∓ iW 2

L√
2

, W±
H =

W 1
H ∓ iW 2

H√
2

, (2.8)

ZL = cos θW W 3
L − sin θW BL , ZH = W 3

H + xH
v2

f2
BH , (2.9)

AL = sin θW W 3
L + cos θW BL , AH = −xH

v2

f2
W 3

H + BH , (2.10)

– 7 –



J
H
E
P
0
1
(
2
0
0
7
)
0
6
6

where θW is the usual weak mixing angle and

xH =
5gg′

4(5g2 − g′2)
. (2.11)

From these breakings, the T-odd set of SU(2) × U(1) gauge bosons acquires masses,

given at O(v2/f2) by

MWH
= fg

(

1 − v2

8f2

)

, MZH
≡ MWH

, MAH
=

fg′√
5

(

1 − 5v2

8f2

)

. (2.12)

The masses of the T-even gauge bosons are generated only through the second step of

symmetry breaking. They are given by

MWL
=

gv

2

(

1 − v2

12f2

)

, MZL
=

gv

2 cos θW

(

1 − v2

12f2

)

, MAL
= 0 . (2.13)

Note that T-parity ensures that the custodial relation MWL
= MZL

cos θW is exactly satis-

fied at tree level.

In order to ensure that Φ , ω , η are odd under T-parity, whereas the SM Higgs doublet

H is even, one makes the following T-parity assignment:

Π 7→ −ΩΠΩ , where Ω = diag(1, 1,−1, 1, 1) . (2.14)

As mentioned above, Φ is an additional scalar triplet in a symmetric representation of

SU(2)L. Its mass is given by

mΦ =
√

2mH
f

v
, (2.15)

with mH being the mass of the SM Higgs scalar. As pointed out in [23], mH in the LHT

model can be significantly higher than in supersymmetry. In appendix A we show that Φ

has only negligible effects on the decays studied in the present paper.

The fields ω±, ω0 and η are the Goldstone bosons associated with the breaking of

[SU(2) × U(1)]1 × [SU(2) × U(1)]2 to its diagonal subgroup. They are thus eaten by the

heavy gauge bosons W±
H , ZH and AH , respectively.1

2.2 Fermion sector

A consistent and phenomenologically viable implementation of T-parity in the fermion

sector requires the introduction of mirror fermions [24]. We embed the fermion doublets

into the following incomplete representations of SU(5), and introduce a right-handed SO(5)

multiplet ΨR:

Ψ1 =







iψ1

0

0






, Ψ2 =







0

0

iψ2






, ΨR =







ψ̃R

χR

ψR






, (2.16)

1To be exact, Φ, ω and η mix with each other at O(v2/f2) [23] and it is a linear combination of the

fields that is eaten. See appendix B for details.
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with

ψi = −σ2qi = −σ2

(

ui

di

)

(i = 1, 2) , ψR = −iσ2

(

uHR

dHR

)

. (2.17)

Under T-parity these fields transform as

Ψ1 7→ −Σ0Ψ2 , Ψ2 7→ −Σ0Ψ1 , ΨR 7→ −ΨR . (2.18)

Thus, the T-parity eigenstates of the fermion doublets are given by

qSM =
q1 − q2√

2
, qH =

q1 + q2√
2

. (2.19)

qSM are the left-handed SM fermion doublets (T-even), and qH are the left-handed mirror

fermion doublets (T-odd). The right-handed mirror fermion doublet is given by ψR.

The mirror fermions can be given O(f) masses via a mass term

Lmirror = −κijf
(

Ψ̄i
2ξ + Ψ̄i

1Σ0Ωξ†Ω
)

Ψj
R , (2.20)

where we sum over the generation indices i, j = 1, 2, 3 and ξ = eiΠ/f is needed to make

Lmirror SU(5) invariant.

The mirror fermions thus acquire masses, given by [25]

mu
Hi =

√
2κif

(

1 − v2

8f2

)

≡ mHi

(

1 − v2

8f2

)

, (2.21)

md
Hi =

√
2κif ≡ mHi , (2.22)

where κi are the eigenvalues of the mass matrix κ.

The additional fermions ψ̃R and χR can be given large Dirac masses by introducing

additional fermions, as described in detail in [24, 34]. In what follows, we will simply

assume that they are decoupled from the theory.

2.3 Yukawa sector

In order to cancel the quadratic divergence of the Higgs mass coming from top loops, an

additional heavy quark T+ is introduced, which is even under T-parity and transforms,

to leading order in v/f , as a singlet under SU(2)L. The implementation of T-parity then

requires also a T-odd partner T−, which is an exact singlet under SU(2)1 × SU(2)2 and

therefore does not contribute to the decays in question (see [26] for details).

The Yukawa coupling for the top sector is then given by [34, 36]

Ltop = − 1

2
√

2
λ1fεijkεxy

[

(Q̄1)i(Σ)jx(Σ)ky − (Q̄2Σ0)i(Σ̃)jx(Σ̃)ky

]

u3
R

− λ2f(t̄′1t
′
1R + t̄′2t

′
2R) + h.c. , (2.23)

where

Q1 =







ψ1

t′1
0






, Q2 =







0

t′2
ψ2






, (2.24)
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the superscript in u3
R denotes the third quark generation, and Σ̃ = Σ0ΩΣ†ΩΣ0 is the image

of Σ under T-parity.

Note that under T-parity

Q1 ↔ −Σ0Q2 , t′1R ↔ −t′2R , u3
R 7→ u3

R , (2.25)

so that the T-parity eigenstates are given by

t′± =
t′1 ∓ t′2√

2
, t′±R =

t′1R ∓ t′2R√
2

. (2.26)

As t′− and t′−R do not mix with the mirror fermions at tree level, the mass eigenstates,

denoted by (T−)L and (T−)R for the left and right-handed part, respectively, are simply

given by

(T−)L ≡ t′− , (T−)R ≡ t′−R . (2.27)

However, the T-even eigenstates mix with each other, so that the mass eigenstates of

the top quark t and its heavy partner T+ are given by

tL = cL(qSM)1 − sLt′+ , (T+)L = sL(qSM)1 + cLt′+ , (2.28)

tR = cRu3
R − sRt′+R , (T+)R = sRu3

R + cRt′+R , (2.29)

where (qSM)1 denotes the upper component of the left-handed SM quark doublet, and

sL = xL
v

f

[

1 +
v2

f2
d2

]

, (2.30)

cL = 1 − x2
L

2

v2

f2
, (2.31)

sR =
√

xL

[

1 − v2

f2
(1 − xL)

(

1

2
− xL

)]

, (2.32)

cR =
√

1 − xL

[

1 +
v2

f2
xL

(

1

2
− xL

)]

, (2.33)

with

xL =
λ2

1

λ2
1 + λ2

2

, d2 = −5

6
+

1

2
x2

L + 2xL(1 − xL) . (2.34)

This mixing leads to a modification of the top quark couplings relatively to the SM, as can

be seen in the Feynman rules given in appendix B.

The masses are then given by

mt =
λ1λ2v

√

λ2
1 + λ2

2

[

1 +
v2

f2

(

−1

3
+

1

2
xL(1 − xL)

)]

, (2.35)

mT+
=

f

v

mt
√

xL(1 − xL)

[

1 +
v2

f2

(

1

3
− xL(1 − xL)

)]

, (2.36)

mT−
=

f

v

mt√
xL

[

1 +
v2

f2

(

1

3
− 1

2
xL(1 − xL)

)]

. (2.37)
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As the Yukawa couplings of the other SM quarks are small, there is no need to introduce

additional heavy partners to cancel their quadratically divergent contribution to the Higgs

mass. Thus the Yukawa coupling for the other up-type fermions is simply given by2

Lup = − 1

2
√

2
λufεijkεxy

[

(Q̄1)i(Σ)jx(Σ)ky − (Q̄2Σ0)i(Σ̃)jx(Σ̃)ky

]

uR + h.c. , (2.38)

and their masses are given by

mi
u = λi

uv

(

1 − v2

3f2

)

(i = 1, 2) . (2.39)

For the down-type Yukawa term, we take [36]

Ldown =
iλd

2
√

2
fεijεxyz

[

(Ψ̄2)x(Σ)iy(Σ)jzX − (Ψ̄1Σ0)x(Σ̃)iy(Σ̃)jzX̃
]

dR + h.c. , (2.40)

where we sum over i, j = 1, 2 and x, y, z = 3, 4, 5, and X ≡ (Σ33)
−1/4 has been introduced

in order to make Ldown gauge invariant. Note that here

Ψ1 =







q1

0

0






, Ψ2 =







0

0

q2






, (2.41)

i. e. no insertion of σ2 is needed. From this Yukawa term, we obtain the down-type quark

masses to be

mi
d = λi

dv

(

1 − v2

12f2

)

(i = 1, 2, 3) . (2.42)

Lepton masses are generated in a completely analogous way.

2.4 Weak mixing in the mirror sector

As discussed in detail in [25, 26], one of the important ingredients of the mirror sector is

the existence of four CKM-like unitary mixing matrices, two for mirror quarks and two for

mirror leptons:

VHu , VHd , VH` , VHν . (2.43)

They satisfy

V †
HuVHd = VCKM , V †

HνVH` = V †
PMNS , (2.44)

where in VPMNS [38] the Majorana phases are set to zero as no Majorana mass term has

been introduced for the right-handed neutrinos. The mirror mixing matrices in (2.43) pa-

rameterize flavour violating interactions between SM fermions and mirror fermions that

2Strictly speaking, all three generations have to be included in the top Yukawa term, where λ1 then

becomes the usual 3 × 3 Yukawa coupling matrix, as discussed in detail in [37]. However, as found there,

the mixing of T+ with u, c quarks is experimentally highly constrained, so we can safely neglect it. For

simplicity, we thus write the Yukawa term for each generation separately, and later include the CKM mixing

“by hand” in the Feynman rules given in appendix B.
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are mediated by the heavy gauge bosons WH , ZH and AH . The notation in (2.43) indi-

cates which of the light fermions of a given electric charge participates in the interaction.

Feynman rules for these interactions are given in appendix B.

In the course of our analysis it will be useful to introduce the following quantities [26]:

ξ
(K)
i = V ∗is

Hd V id
Hd , ξ

(d)
i = V ∗ib

Hd V id
Hd , ξ

(s)
i = V ∗ib

Hd V is
Hd (i = 1, 2, 3) , (2.45)

that govern K, Bd and Bs decays, respectively.

Following [39] we will parameterize VHd generalizing the usual CKM parameterization,

as a product of three rotations, and introducing a complex phase in each of them, thus

obtaining

VHd =







1 0 0

0 cd
23 sd

23e
−iδd

23

0 −sd
23e

iδd
23 cd

23






·







cd
13 0 sd

13e
−iδd

13

0 1 0

−sd
13e

iδd
13 0 cd

13






·







cd
12 sd

12e
−iδd

12 0

−sd
12e

iδd
12 cd

12 0

0 0 1







(2.46)

Performing the product one obtains the expression

VHd =







cd
12c

d
13 sd

12c
d
13e

−iδd
12 sd

13e
−iδd

13

−sd
12c

d
23e

iδd
12 − cd

12s
d
23s

d
13e

i(δd
13−δd

23) cd
12c

d
23 − sd

12s
d
23s

d
13e

i(δd
13−δd

12−δd
23) sd

23c
d
13e

−iδd
23

sd
12s

d
23e

i(δd
12

+δd
23

) − cd
12c

d
23s

d
13e

iδd
13 −cd

12s
d
23e

iδd
23 − sd

12c
d
23s

d
13e

i(δd
13
−δd

12
) cd

23c
d
13







(2.47)

As in the case of the CKM matrix the angles θd
ij can all be made to lie in the first quadrant

with 0 ≤ δd
12, δ

d
23, δ

d
13 < 2π. The matrix VHu is then determined through VHu = VHdV

†
CKM.

We point out that in [25] and in the first version of [26] VHd was parameterized in

terms of three mixing angles and only one phase like VCKM, overlooking the presence of

two additional phases. The presence of three phases was first pointed out in [39]. In short,

the reason for the appearance of two additional phases relative to the CKM matrix is as

follows. VCKM and VHd are both unitary matrices containing three real angles and six

complex phases. Varying independently the phases of ordinary up- and down-quark states

allows us to rotate five phases away from VCKM (an over-all phase change of all the quark

states leaves VCKM invariant). In rotating phases away from VHd, one can still act on only

three mirror states, thus obtaining for VHd a parameterization in terms of three mixing

angles and three phases.

The six parameters of VHd have to be determined in flavour violating processes. In [26]

we have outlined briefly this determination in the context of particle-antiparticle mixing.

Including rare K, Bd and Bs decays will further help to determine these parameters.

3. Rare K and B decays beyond MFV

3.1 Preliminaries

Before presenting in sections 4 and 5 the details of the calculations of rare K and B decays

in the LHT model in question, it will be useful to have a general look at rare decays within

models with new flavour and CP-violating interactions but with the same local operators
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of the SM or more generally of constrained MFV (CMFV) models, as defined in [2, 33].

While the presentation given below is tailored to the subsequent sections, it can easily be

adapted to any model of this type.

It should be emphasized that while the formulae given below bear many similarities to

the ones given in [30], they differ from the latter ones in the following important manner.

In [30] a simple beyond-MFV scenario of new physics has been considered in which new

physics affected only the Z0-penguin function C that became a complex quantity, but

remained universal for K, Bd and Bs decays. In this manner several CMFV relations

involving only CP-conserving quantities remained valid and the main new effects were seen

in CP-violating quantities like Br(KL → π0νν̄) and the CP-asymmetries in B → Xs`
+`−.

In particular, the full system of rare K, Bd and Bs decays considered in this section could

be described by three complex functions

X = |X| ei θX , Y = |Y | ei θY , Z = |Z| ei θZ , (3.1)

with correlations between these functions resulting from the universality of the Z0-penguin

function C = |C| exp (iθC). As a result the CMFV correlations between observables in K,

Bd and Bs were only affected in the cases in which θi played a role. In the LHT model the

structure of new flavour violating interactions is much richer. Let us spell it out in explicit

terms.

3.2 Xi, Yi, Zi functions

In the CMFV models the new physics contributions enter for all practical purposes only

through the functions X, Y and Z that multiply the CKM factors λ
(i)
t

λ
(K)
t = V ∗

ts Vtd , λ
(d)
t = V ∗

tb Vtd , λ
(s)
t = V ∗

tb Vts , (3.2)

for K, Bd and Bs systems respectively.

It will be useful to keep this structure in the LHT model and absorb all new physics

contributions in the functions Xi, Yi, Zi with i = K,d, s defined as follows:

Xi = XSM + X̄even +
1

λ
(i)
t

X̄odd
i ≡ |Xi| ei θi

X , (3.3)

Yi = YSM + Ȳeven +
1

λ
(i)
t

Ȳ odd
i ≡ |Yi| ei θi

Y , (3.4)

Zi = ZSM + Z̄even +
1

λ
(i)
t

Z̄odd
i ≡ |Zi| ei θi

Z . (3.5)

Here XSM, YSM and ZSM are the SM contributions for which explicit expressions can

be found in appendix C. X̄even, Ȳeven and Z̄even are the contributions from the T-even

sector, that is the contributions of T+ and of t at order v2/f2 necessary to make the GIM

mechanism [40] work. The latter contributions, similarly to XSM, YSM and ZSM, are real

and independent of i = K,d, s. They can be extracted from [21] and will be given in

section 4. The main result of the present paper is the calculation of the functions X̄odd
i ,

Ȳ odd
i and Z̄odd

i , that represent the T-odd sector of the LHT model and are obtained from
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penguin and box diagrams with internal mirror fermions. The details of this calculation

can be found in section 5. In what follows we will present the most interesting branching

ratios in terms of Xi and Yi. The CKM elements that we will use are those determined

from tree level decays.

3.3 K → πνν̄

Generalizing the formulae in [30] we have

Br(K+ → π+νν̄) = κ+

[

r̃2A4R2
t |XK |2 + 2r̃P̄c(x)A2Rt|XK | cos βK

X + P̄c(x)2
]

, (3.6)

Br(KL → π0νν̄) = κLr̃2A4R2
t |XK |2 sin2 βK

X , (3.7)

where [41]

r̃ =

∣

∣

∣

∣

Vts

Vcb

∣

∣

∣

∣

' 0.98 , κ+ = (5.08 ± 0.17) · 10−11 , κL = (2.22 ± 0.07) · 10−10 , (3.8)

P̄c(x) =

(

1 − λ2

2

)

Pc(x) , Pc(x) = 0.42 ± 0.05 , (3.9)

with Pc(x) including both the NNLO corrections [41] and long distance contributions [42].

Finally

βK
X = β − βs − θK

X . (3.10)

The values of A, Rb, β and βs are collected in table 1 of section 10.

Of particular interest is the relation

sin 2(β + ϕBd
) = sin 2βK

X , (3.11)

that for ϕBd
= 0, θK

X = 0 reduces to the MFV relation of [43, 44]. A violation of this relation

would signal the presence of new complex phases and generally non-MFV interactions. In

this context the ratio

Br(KL → π0νν̄)

Br(KL → π0νν̄)SM
=

∣

∣

∣

∣

XK

XSM

∣

∣

∣

∣

2 [

sin βK
X

sin (β − βs)

]2

(3.12)

is very useful, as it is very sensitive to θK
X and is theoretically very clean.

The most recent SM predictions for the branching ratios read [41]

Br(K+ → π+νν̄) = (8.0 ± 1.1) · 10−11 , Br(KL → π0νν̄) = (2.9 ± 0.4) · 10−11 , (3.13)

to be compared with the present experimental measurements [45, 46]

Br(K+ → π+νν̄) = (1.47+1.30
−0.89) · 10−10 , Br(KL → π0νν̄) < 2.1 · 10−7 (90%C.L.) . (3.14)

Recent reviews of the K → πνν̄ decays can be found in [47, 48].
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3.4 Bs,d → µ+µ−

Here, we will mainly be interested in the following ratios

Br(Bs → µ+µ−)

Br(Bs → µ+µ−)SM
=

∣

∣

∣

∣

Ys

YSM

∣

∣

∣

∣

2

, (3.15)

Br(Bd → µ+µ−)

Br(Bd → µ+µ−)SM
=

∣

∣

∣

∣

Yd

YSM

∣

∣

∣

∣

2

, (3.16)

Br(Bd → µ+µ−)

Br(Bs → µ+µ−)
=

τ(Bd)

τ(Bs)

mBd

mBs

F 2
Bd

F 2
Bs

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2 ∣

∣

∣

∣

Yd

Ys

∣

∣

∣

∣

2

, (3.17)

where the departure of the last factor from unity signals non-MFV interactions. In ob-

taining these formulae we assume that the CKM parameters have been determined in tree

level decays independently of new physics so that they cancel in the ratios in question.

In the LHT model [26]

∆Md

∆Ms
=

mBd

mBs

B̂Bd
F 2

Bd

B̂BsF
2
Bs

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2 CBd

CBs

, (3.18)

where

CBq =
∆Mq

(∆Mq)SM
(q = d, s) . (3.19)

Consequently, using (3.17) and (3.18), the golden relation between Br(Bd,s → µ+µ−) and

∆Md/∆Ms valid in CMFV models [31] gets modified as follows:

Br(Bs → µ+µ−)

Br(Bd → µ+µ−)
=

B̂Bd

B̂Bs

τ(Bs)

τ(Bd)

∆Ms

∆Md
r , r =

∣

∣

∣

∣

Ys

Yd

∣

∣

∣

∣

2 CBd

CBs

, (3.20)

with r being generally different from unity.

The most recent SM predictions read [33]

Br(Bs → µ+µ−) = (3.35±0.32)·10−9 , Br(Bd → µ+µ−) = (1.03±0.09)·10−10 , (3.21)

to be compared with the experimental upper bounds from CDF [49]

Br(Bs → µ+µ−) < 1 · 10−7 , Br(Bd → µ+µ−) < 3 · 10−8 . (3.22)

3.5 B → Xs,dνν̄

We will also study the theoretical clean decay B → Xs,dνν̄ and look at the ratios

Br(B → Xsνν̄)

Br(B → Xsνν̄)SM
=

∣

∣

∣

∣

Xs

XSM

∣

∣

∣

∣

2

, (3.23)

Br(B → Xdνν̄)

Br(B → Xdνν̄)SM
=

∣

∣

∣

∣

Xd

XSM

∣

∣

∣

∣

2

, (3.24)

Br(B → Xdνν̄)

Br(B → Xsνν̄)
=

∣

∣

∣

∣

Xd

Xs

∣

∣

∣

∣

2 ∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2

, (3.25)

with |Vtd| and |Vts| obtained from tree level decays. Note that for Xd 6= Xs the relation of

the last ratio to |Vtd/Vts| is modified with respect to MFV models.
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4. Results for the T-even sector

The contribution from the T-even sector, denoted by X̄even and Ȳeven in (3.3) and (3.4),

respectively, can be extracted from [21], where the functions X and Y have been calculated

in the LH model without T-parity. Imposing T-parity implies

s = c = s′ = c′ =
1√
2

(4.1)

and vanishing of the diagrams in the classes 1, 2, 4 and 6 in [21]. Moreover there are

no corrections from the breakdown of custodial symmetry, and the left-over divergence,

discussed in detail in [21], is also absent.

We find then

X̄even = x2
L

v2

f2

[

U3(xt, xT ) +
xL

1 − xL

xt

8

]

, (4.2)

Ȳeven = x2
L

v2

f2

[

V3(xt, xT ) +
xL

1 − xL

xt

8

]

, (4.3)

with the two terms on the r.h.s. coming from class 3 and 5 in [21], respectively. The

functions U3(xt, xT ) and V3(xt, xT ) are given in appendix C.

5. Results for the T-odd sector

5.1 Preliminaries

In figures 1 and 2 we show the diagrams contributing to X̄odd
i in (3.3). Similar diagrams

but with external charged leptons contribute to Ȳ odd
i in (3.4). They can be divided into

two classes. The first class involves in the unitary gauge W±
H and the mirror fermions ui

H

exchanges, while the second class involves ZH , AH and di
H exchanges. In the renormal-

izable Rξ gauges also diagrams with Goldstone bosons have to be included. We will first

discuss the calculation in the unitary gauge. Subsequently we will turn to the calculation

in the ’t Hooft-Feynman gauge, verifying our result in the unitary gauge.

5.2 ZL-penguin diagrams in the unitary gauge

Only ZL-penguin diagrams contribute to the decays considered because the couplings of

ZH and AH to νν̄ and µ+µ− vanish due to T-parity. We note that the diagrams with

internal W±
H are fully analogous to the corresponding SM diagrams with internal W±

L .

Moreover the diagrams with triple gauge boson vertices vanish in the case of internal AH

and ZH contributions.

There are two additional features with respect to the SM calculation and the box

diagram calculation presented in [26] and below:

• The diagrams in figure 1 appear first to be O(1), that is they are not suppressed by

v2/f2.

• The couplings of mirror fermions to ZL are vectorial (γµ) in contrast to the SM

couplings that have both γµ and γµγ5 components.
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ZL

ui
Hui

H

WH

νν

s d

ZL

di
Hdi

H

ZH , AH

νν

s d

ZL

WHWH

ui
H

νν

s d

ZL

WH

ui
H

νν

s
d

ZL

ZH , AH

di
H

νν

s
d

Figure 1: ZL-penguin diagrams contributing in the T-odd sector.

Clearly the O(1) contributions have to vanish as otherwise it would not be possible to de-

couple the mirror fermions in the limit f → ∞. This is assured by the vectorial coupling of

ZL to the mirror fermions. The missing of diagrams with triple gauge boson vertices in the

neutral gauge boson case is compensated by the difference between d̄i
HZµ

Ldi
H and ūi

HZµ
Lui

H

couplings, so that the charged (W±
H ) and neutral (ZH , AH) gauge boson contributions of

O(1) to the ZL-penguin vanish independently of each other in the unitary gauge.

As the inclusion of v2/f2 corrections to the neutral gauge boson interactions leads only

to an overall factor multiplying the ZH and AH contributions, which vanish independently

of each other, we find that there is no contribution from mirror fermions to ZL-penguin

diagrams in the unitary gauge. The inclusion of v2/f2 corrections to the relations between

the masses of ui
H and di

H and to the gauge boson masses does not change this result.

5.3 Box diagrams in the unitary gauge

In order to simplify the formulae, we will present the results for the box diagrams shown in

figure 2 in the limit of degenerate mirror leptons. As the box contributions vanish in the

limit of degenerate mirror quarks, the inclusion of mass splittings in the lepton spectrum

is a higher order effect. We have numerically verified that it can be neglected for the range

of mirror fermion masses considered in the analysis.

Let us begin with the neutral gauge boson contributions. Similarly to ∆F = 2 transi-

tions considered in [25, 26], only the gµν part of the gauge boson propagators is relevant.

The contributions involving kµkν/M2
WH

cancel each other between the two last sets of box

diagrams in figure 2. Consequently the neutral gauge boson box contributions to X̄odd
i

and Ȳ odd
i are gauge independent. This means that the neutral gauge boson contributions

to ZL-penguins must vanish in an arbitrary gauge which is confirmed through an explicit

calculation, as discussed below.
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WH WH

s d

ν ν

ui
H

`
j

H

ZH , AH ZH , AH

s d

ν ν

di
H

ν
j

H

ZH , AH ZH , AH

s d

ν ν

di
H

ν
j

H

Figure 2: Box diagrams in the unitary gauge.

ZL

ω+ω−

ui
H

νν

s d

ZL

WHω−

ui
H

νν

s d

Figure 3: O
(

v2/f2
)

contributions to ZL-penguin in the ’t Hooft-Feynman gauge.

The result for the box contributions involving W±
H turns out to be divergent. As

box contributions in a renormalizable gauge, like the ’t Hooft-Feynman gauge, are finite

by power counting, the box diagram contributions involving W±
H must then be gauge

dependent. Before giving the result for the unitary gauge calculation, including also neutral

gauge boson contributions, let us repeat the calculation in the ’t Hooft-Feynman gauge.

5.4 Calculation in the ’t Hooft-Feynman gauge

In the ’t Hooft-Feynman gauge also the diagrams with Goldstone bosons have to be in-

cluded. Let us first compute the ZL-penguin diagrams. The O (1) contributions vanish as

expected and we have to consider O
(

v2/f2
)

corrections. Here, as in the unitary gauge,

there are no contributions from diagrams involving only gauge bosons. On the other hand

diagrams with Goldstone bosons contribute at O
(

v2/f2
)

. To this end we had to generalize

the Feynman rules of [25] to include O
(

v2/f2
)

corrections to vertices involving Goldstone

bosons. It turns out that O
(

v2/f2
)

corrections to quark-mirror quark-Goldstone boson

vertices cancel in the calculation, which implies that the neutral gauge boson contributions

to the ZL-penguin, not having triple gauge boson vertices and corresponding vertices with

Goldstone bosons, vanish also in the ’t Hooft-Feynman gauge. This was to be expected as

the box contributions from neutral gauge bosons are gauge independent.

Thus in the ’t Hooft-Feynman gauge only two diagrams at O
(

v2/f2
)

, shown in figure 3,

contribute to the ZL-penguin vertex. Using the Feynman rules of appendix B we find that

the first diagram in figure 3 is divergent with the divergence precisely equal to the one

found in box diagrams with W±
H exchanges calculated in the unitary gauge.
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Including next the finite contributions from the diagrams in figure 3 and the finite

contributions from box diagrams with W±
H and Goldstone boson exchanges in the ’t Hooft-

Feynman gauge, we confirm the final results for X̄odd
i and Ȳ odd

i obtained in the unitary

gauge.

5.5 Final results for the T-odd sector

As described above, we have performed the calculation of the functions X̄odd
i and Ȳ odd

i

in the unitary gauge and in the ’t Hooft-Feynman gauge obtaining the same results. In

particular, we found that the left-over divergence obtained in the unitary gauge was not

an artifact of a non-renormalizable gauge but a physical gauge independent result. A

similar divergence has been found in the ZL-penguin calculation in the LH model without

T-parity [21]. We will recall the interpretation of this divergent contribution given in [21]

in the next section.

The final results for X̄odd
i and Ȳ odd

i in the LHT model are then given as follows:

X̄odd
i =

[

ξ
(i)
2

(

Jνν̄(z2, y) − Jνν̄(z1, y)
)

+ ξ
(i)
3

(

Jνν̄(z3, y) − Jνν̄(z1, y)
)

]

, (5.1)

Ȳ odd
i =

[

ξ
(i)
2

(

Jµµ̄(z2, y) − Jµµ̄(z1, y)
)

+ ξ
(i)
3

(

Jµµ̄(z3, y) − Jµµ̄(z1, y)
)

]

, (5.2)

where

Jνν̄ (zi, y) =
1

64

v2

f2

[

ziSodd + F νν̄(zi, y;WH)

+4
(

G(zi, y;ZH) + G1(z
′
i, y

′;AH) + G2(zi, y; η)
)

]

, (5.3)

Jµµ̄ (zi, y) =
1

64

v2

f2

[

ziSodd + Fµµ̄(zi, y;WH)

−4
(

G(zi, y;ZH) + G1(z
′
i, y

′;AH) − G2(zi, y; η)
)

]

, (5.4)

Sodd =
1

ε
+ log

µ2

M2
WH

, (5.5)

with the functions F νν̄ , Fµµ̄, G, G1 and G2 given in appendix C and the various variables

defined as follows

zi =
m2

Hi

M2
WH

=
m2

Hi

M2
ZH

, z′i = azi with a =
5

tan2 θW
, (5.6)

y =
m2

H`

M2
WH

=
m2

H`

M2
ZH

, y′ = ya , η =
1

a
. (5.7)

In the unitary gauge the results in (5.1)–(5.4) follow from box diagrams only, since

the ZL-penguin diagrams do not contribute in this gauge, as discussed in section 5.2. The

notation in (5.3) and (5.4) indicates which diagrams contribute to a given function, with

G2 resulting from diagrams with both ZH and AH exchanges. In the ’t Hooft-Feynman
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gauge the contribution of the ZL-penguin diagram is found to be

∆Jνν̄ = ∆Jµµ̄ ≡ ∆J
1

64

v2

f2
, (5.8)

∆J = ziSodd − 8ziR2(zi) +
3

2
zi + 2ziF2(zi) , (5.9)

where the functions R2 and F2 are given in appendix C.

The box diagram contribution involving W±
H in the ’t Hooft-Feynman gauge can simply

be obtained from (5.1)–(5.4) and (5.8) using the gauge independence of X̄odd
i and Ȳ odd

i .

The formulae (5.1)–(5.4) are the main results of our paper.

6. The issue of left-over singularities

It may seem surprising that FCNC amplitudes considered in the previous section con-

tain residual ultraviolet divergences reflected by the non-cancellation of the 1/ε poles at

O
(

v2/f2
)

in our unitary gauge calculation. Indeed due to the GIM mechanism the FCNC

processes considered here vanish at tree level both in the SM and in the LHT model in

question. Therefore within the particle content of the low energy representation of the LHT

model there seems to be no freedom to cancel the left-over divergences as the necessary

tree level counter terms are absent.

At first sight one could worry that the remaining divergence is an artifact of the

unitary gauge calculation. However, an additional calculation in the ’t Hooft-Feynman

gauge convinced us that the found divergence is gauge independent. A similar result has

been found in the context of the LH model without T-parity in [21] and understood as the

sensitivity of the decay amplitudes to the UV completion of the LH model.3 The same

interpretation can be made here. After all, the LHT model is a non-linear sigma model,

which is a non-renormalizable description of the low energy behavior of a symmetric theory

below the scale where the symmetry is dynamically broken.

We have found explicitly that in the ’t Hooft-Feynman gauge the singularity followed

entirely from the interactions of the Goldstone bosons of the dynamically broken global

symmetry with the fermions. As the Goldstone bosons in question are the only remi-

niscences of the spontaneous symmetry breakdown present in the low energy theory, the

estimate of the size of the divergences through their interactions with fermions in figure 3

should in principle be adequate. However, as emphasized in [21], the light fermions may

have a more complex relation to the fundamental fermions of the ultraviolet completion of

the theory. We refer the reader to [21], where a discussion of this issue and a comparison

with QCD can be found.

In what follows we will as in [21] remove 1/ε terms from (5.5) and set µ = Λ to obtain

Jνν̄
div = Jµµ̄

div = zi
1

64

v2

f2
log

Λ2

M2
WH

, (6.1)

3A similar singularity has been found independently in [22], in the context of the study of electroweak

precision constraints.
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Figure 4: Jνν̄ (lower) and Jµµ̄ (upper) as functions of mHi for values of mH` =400GeV(dotted),

500GeV (solid) and 600GeV (dashed) with (dark) and without (light) Jνν̄
div = Jµµ̄

div
included.

as a minimal estimate of the UV sensitivity of the model. Setting

Λ = 4πf , v = 246GeV , (6.2)

we find that for f = 1000GeV, implying MWH
= 652GeV,

Jνν̄
div = Jµµ̄

div = zi · 0.006 . (6.3)

In figure 4 we plot Jνν̄ and Jµµ̄ as functions of mHi for three values of mH` with

and without Jνν̄
div and Jµµ̄

div included. We observe that the divergences constitute a sizable

fraction of the total result. The coefficient of zi in the divergent terms Jνν̄
div and Jµµ̄

div is of the

same order of magnitude of the analogous linear coefficient in the convergent contributions,

but roughly four times larger. Moreover, the linear contribution in the range of mirror

fermion masses considered is the dominant one, thus explaining the important impact of

the divergences. At first sight this could imply the loss of the predictive power of the theory

as our estimate of the divergent contribution is clearly an approximation. On the other

hand the divergence found has a universal character and we can simply write

Jνν̄
div = Jµµ̄

div = δdiv zi (6.4)

and treat δdiv as a free parameter. Assuming that δdiv encloses all effects coming from the

UV completion, which is true if light fermions do not have a more complex relation to the

fundamental fermions of the UV completion that could spoil its flavour independence, one

can in principle fit δdiv to the data and trade it for one observable. At present this is not

feasible, but could become realistic when more data for FCNC processes will be available.

On the other hand, implementing T-parity removes all divergences from the T-even

sector. This is easy to understand. The only new T-even particle is T+ which can be

thought of as an arbitrary singlet field mixing with the SM top quark, independently of

the non-linear sigma model. Of the “pion” matrix Π, only the SM Higgs doublet is present

in the T-even sector, and all modifications in its couplings appear due to the mixing of

T+ with t. Thus the T-even sector of the LHT model is effectively decoupled from the

breaking SU(5) → SO(5) of the non-linear sigma model, which has been the basic reason

for the appearance of the singularity described above and in [21].
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7. B → Xs`
+`−

7.1 Preliminaries

The branching ratio for the rare decay B → Xs`
+`− depends in the SM on the functions

YSM, ZSM and D′
SM with the latter relevant also for the B → Xsγ decay. The formulae

for the branching ratio are very complicated and will not be presented here. They can be

found in [50], where also the formulae for the forward-backward asymmetries are given. In

the LHT model the function YSM is generalized to Ys calculated in the previous section,

whereas D′
LHT has been calculated in [26] and is given for completeness in appendix C.

What remains to be calculated is the function Zs that we defined in (3.5). The SM

contribution can be written as

ZSM = C0 +
1

4
D0 (7.1)

with C0 and D0 given in the ’t Hooft-Feynman gauge in appendix C. ZSM is gauge inde-

pendent. We will also need the QCD-penguin function E0 that can be found in appendix C

as well.

7.2 T-even sector

In the case of the T-even sector it is useful to work in the unitary gauge. The function

Ceven can be extracted from [21] by imposing T-parity with the result

Ceven
unitary =

x2
L

8

v2

f2
Seven

(

xt − xT

2
− d2xT

v2

f2

)

−x2
L

16

v2

f2

(−6 − 5xt + 5x2
t − 3xT + 3xtxT

2(xt − 1)

+
8xt − 10x2

t + 5x3
t

(xt − 1)2
log xt − (4xt + xT ) log xT

)

+
x2

L

8

v4

f4
xT

(

−3

2
d2 + x2

L + d2 log xT

)

, (7.2)

where

Seven =
1

ε
+ log

µ2

M2
WL

, (7.3)

and d2 has been defined in (2.34).

The function Deven in the LHT model can be obtained with the help of DSM in the

unitary gauge. To our knowledge the latter function has never been given in this gauge in

the literature. It can be found with the help of [21] as follows.

From the gauge independence of ZSM we know that

CSM = C0 +
1

2
%̄SM , DSM = D0 − 2%̄SM , (7.4)

where %̄SM is gauge dependent and vanishes in the ’t Hooft-Feynman gauge. It has been

calculated in the unitary gauge in [21] with the result

%̄SM = −1

8
xtSeven − −3x2

t + 17xt

16(1 − xt)
− 8x2

t − x3
t

8(xt − 1)2
log xt . (7.5)
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Consequently, using D0 in appendix C, we find

DSM
unitary(xt) =

xt

4
Seven +

−153xt + 383x2
t − 245x3

t + 27x4
t

72(xt − 1)3

−16 − 64xt + 36x2
t + 93x3

t − 84x4
t + 9x5

t

36(xt − 1)4
log xt . (7.6)

Proceeding then as in the case of B → Xsγ in [21] but including also v4/f4 corrections

to the diagrams with internal T+ exchanges we find

Deven
unitary =

v2

f2
x2

L

[(

1 + 2d2
v2

f2

)

DSM
unitary(xT ) − DSM

unitary(xt)

]

, (7.7)

and, dropping O(v4/f4) terms,

Deven
unitary =

v2

f2
x2

L

[

xT

4

(

1 + 2d2
v2

f2

)

Seven − DSM
unitary(xt)

]

+
v2

f2
x2

L

[

−41 − 24 log xT

18
+

xT

8

(

1 + 2d2
v2

f2

)

(3 − 2 log xT )

]

, (7.8)

and subsequently

Z̄even = Ceven
unitary +

1

4
Deven

unitary (7.9)

which is gauge independent. The divergence Seven cancels in (7.9) so that Z̄even is finite,

in agreement with our statement in section 6.

7.3 T-odd sector

In the T-odd sector it is useful to work in the ’t Hooft-Feynman gauge. Let us denote

Zodd(zi) = Codd(zi) +
1

4
Dodd(zi) , (7.10)

then, from (5.8) and (5.9), we find in the ’t Hooft-Feynman gauge

Codd(zi) = ∆Jµµ̄ =
1

64

v2

f2

[

ziSodd − 8ziR2(zi) +
3

2
zi + 2ziF2(zi)

]

(7.11)

with Sodd defined in (5.5) and the functions R2 and F2 given in appendix C.

Dodd(zi) is then found in analogy to our calculation of the B → Xsγ decay in [26]. We

obtain

Dodd(zi) =
1

4

v2

f2

[

D0(zi) −
1

6
E0(zi) −

1

30
E0(z

′
i)

]

(7.12)

with D0 and E0 given in appendix C. Finally we have

Z̄odd
s =

[

ξ
(s)
2

(

Zodd(z2) − Zodd(z1)
)

+ ξ
(s)
3

(

Zodd(z3) − Zodd(z1)
)

]

. (7.13)

As Dodd(zi) is finite, the divergence in Codd(zi) remains in Zodd. Its estimate can be done

as outlined in section 6.
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8. KL → π0`+`−

The rare decays KL → π0e+e− and KL → π0µ+µ− are dominated by CP-violating contri-

butions. In the SM the main contribution comes from the indirect (mixing-induced) CP

violation and its interference with the direct CP-violating contribution [51 – 54]. The direct

CP-violating contribution to the branching ratio is in the ballpark of 4 · 10−12, while the

CP conserving contribution is at most 3 · 10−12. Among the rare K meson decays, the

decays in question belong to the theoretically cleanest, but certainly cannot compete with

the K → πνν̄ decays. Moreover, the dominant indirect CP-violating contributions are

practically determined by the measured decays KS → π0`+`− and the parameter εK . Con-

sequently they are not as sensitive as the KL → π0νν̄ decay to new physics contributions,

present only in the subleading direct CP violation. However, as pointed out in [30], in the

presence of large new CP-violating phases the direct CP-violating contribution can become

the dominant contribution and the branching ratios for KL → π0`+`− can be enhanced by

a factor of 2–3, with a stronger effect in the case of KL → π0µ+µ− [53, 54].

Adapting the formulae in [52 – 55] with the help of [30] to the LHT model we find

Br(KL → π0`+`−) =
(

C`
dir ± C`

int |as| + C`
mix |as|2 + C`

CPC

)

· 10−12 , (8.1)

where

Ce
dir = (4.62 ± 0.24)(ω2

7V + ω2
7A) , Cµ

dir = (1.09 ± 0.05)(ω2
7V + 2.32ω2

7A) , (8.2)

Ce
int = (11.3 ± 0.3)ω7V , Cµ

int = (2.63 ± 0.06)ω7V , (8.3)

Ce
mix = 14.5 ± 0.05 , Cµ

mix = 3.36 ± 0.20 , (8.4)

Ce
CPC ' 0 , Cµ

CPC = 5.2 ± 1.6 , (8.5)

|as| = 1.2 ± 0.2 (8.6)

with

ω7V =
1

2π

[

P0 +
|YK |

sin2 θW

sinβK
Y

sin(β − βs)
− 4|ZK | sin βK

Z

sin(β − βs)

] [

Imλt

1.4 · 10−4

]

, (8.7)

ω7A = − 1

2π

|YK |
sin2 θW

sin βK
Y

sin(β − βs)

[

Im λt

1.4 · 10−4

]

, (8.8)

where P0 = 2.88 ± 0.06 [56] includes NLO QCD corrections and

βK
Y = β − βs − θK

Y , βK
Z = β − βs − θK

Z (8.9)

with ZK defined in (3.5) and obtained from Zs by changing ξ
(s)
i to ξ

(K)
i .

The effect of the new physics contributions is mainly felt in ω7A, as the corresponding

contributions in ω7V cancel each other to a large extent.

The present experimental bounds

Br(KL → π0e+e−) < 28 · 10−11 [57] , Br(KL → π0µ+µ−) < 38 · 10−11 [58] (8.10)
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are still by one order of magnitude larger than the SM predictions [55]

Br(KL → π0e+e−)SM = 3.54+0.98
−0.85

(

1.56+0.62
−0.49

)

· 10−11 , (8.11)

Br(KL → π0µ+µ−)SM = 1.41+0.28
−0.26

(

0.95+0.22
−0.21

)

· 10−11 (8.12)

with the values in parentheses corresponding to the “−” sign in (8.1).

9. Benchmark scenarios for new parameters

9.1 Preliminaries

In what follows, we will consider as in [26] several scenarios for the structure of the VHd

matrix and the mass spectrum of mirror fermions with the hope to gain a global view about

the possible signatures of mirror fermions in the processes considered and of T+ present in

the T-even contributions.

In the most interesting scenario considered in [26] (Scenario 4 below), the mixing matrix

VHd differed significantly from VCKM. It could have a large non-vanishing complex phase

δd
13, while the phases δd

12 and δd
23, with smaller phenomenological impact, were set to zero.

In this scenario large CP-violating effects in Bs decays have been found. In particular, the

CP asymmetries Sψφ and As
SL could be enhanced by an order of magnitude with respect

to the SM expectations.

In the next section we will be primarily interested in calculating the observables con-

sidered in the previous sections in the scenarios defined in [26]. In particular, it will be

interesting to see how the CMFV correlations between K0, B0
d and B0

s systems [33, 60] are

modified when new sources of flavour and CP violation are present. The parameterization

of various decays in terms of the functions Xi, Yi and Zi that we defined in section 3 is

very useful for such tests.

The main purpose of our numerical analysis is to have a closer look at six scenarios,

with the first five considered already in our previous study of particle-antiparticle mixing

and B → Xsγ. We will recall these five scenarios and introduce a sixth one which has

particularly interesting effects in K → πνν̄ and KL → π0`+`− decays. In all these six

scenarios we set the phases δd
12 and δd

23 to zero. The values of the observables that can

only be produced by allowing these phases to vary freely, are covered by our general scan

anyway. This simplification therefore does not restrict the generality of the analysis. We

will see that Scenarios 4 and 6 turn out to be the most appealing, since they respectively

provide large enhancements in the Bs and K systems. Spectacular effects in both B and

K systems, however, are not simultaneously allowed in a single scenario. Therefore, we

complete the numerical analysis with a general scan over mirror fermion masses and VHd

parameters, with also δd
12 and δd

23 free to differ from zero, finding some interesting points

where significant enhancements in both B and K systems occur.

9.2 Different scenarios

Here we just list the scenarios in question:
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Scenario 1: In this scenario the mirror fermions will be degenerate in mass

mH1 = mH2 = mH3 (9.1)

and only the T-even sector will contribute. This is the MFV limit of the LHT model.

Scenario 2: In this scenario the mirror fermions are not degenerate in mass and

VHd = VCKM . (9.2)

In this case there are no contributions of mirror fermions to D0 − D̄0 mixing and flavour

violating D meson decays, and

ξ
(q)
2 = λ(q)

c , ξ
(q)
3 = λ

(q)
t , (9.3)

with q = d, s and no index q in the K system. As discussed in [26] and below this scenario

differs from the MFV case.

Scenario 3: In this scenario we will choose a linear spectrum for mirror quarks

mH1 = 400GeV, mH2 = 500GeV, mH3 = 600GeV , (9.4)

set mH` = 500GeV and take an arbitrary matrix VHd but with the phases δd
12 and δd

23

set to zero. We stress that similar results are obtained by changing the values above by

±30GeV, with similar comments applying to (9.5) below. In the remaining scenarios we

will modify the mirror quark spectrum but keep mH` = 500GeV.

Scenario 4: This was our favorite scenario in which large departures from the SM and

MFV in Bs decays could be obtained and some problems addressed in [26] could be solved,

with small effects in the experimentally well measured quantities ∆MK and εK . In this

scenario

mH1 ≈ mH2 = 500GeV , mH3 = 1000GeV , (9.5)

1√
2
≤ sd

12 ≤ 0.99 , 5 · 10−5 ≤ sd
23 ≤ 2 · 10−4 , 4 · 10−2 ≤ sd

13 ≤ 0.6 , (9.6)

δd
12 and δd

23 are set to zero, while the phase δd
13 is arbitrary. The hierarchical structure of

the CKM matrix

s13 ¿ s23 ¿ s12 , (CKM) (9.7)

is changed in this scenario to

sd
23 ¿ sd

13 ≤ sd
12 , (VHd) (9.8)

so that VHd looks as follows:

VHd =







cd
12 sd

12 sd
13e

−iδd
13

−sd
12 cd

12 sd
23

−cd
12s

d
13e

iδd
13 −sd

12s
d
13e

iδd
13 1






. (9.9)
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We would like to stress that with the degeneracy mH1 ≈ mH2 the T-odd contributions

in εK proportional to Im(ξ2) and Re(ξ2) vanish, and only the T-odd term proportional

to Im(ξ3)Re(ξ3) contributes. Being Im(ξ3) = sd
13c

d
23s

d
23 sin δd

13, the hierarchy chosen in this

scenario for VHd, with sd
23 ¿ 1, has the advantage of suppressing mirror fermion effects

in εK , allowing at the same time large CP-violating effects in the B0
s − B̄0

s system [26].

Furthermore ∆Ms can be smaller than its SM value in this scenario, and interesting effects

in the B0
d − B̄0

d system are also found.

It will be interesting to see whether in this scenario large departures from the SM

expectations for rare decays can be obtained.

Scenario 5: In all the previous scenarios we will choose the first solution for the angle

γ from tree level decays as given in (10.1) below so that only small departures from the

SM in the B0
d − B̄0

d system will be consistent with the data. In the present scenario one

assumes the second solution for γ in (10.1) in contradiction with the SM and MFV. We

have shown in [26] that the presence of new flavour violating interactions could still bring

the theory to roughly agree with the available data, in particular with the asymmetry

SψKS
. In spite of that, the combined measurements on Ad

SL and cos(2β + 2ϕBd
) and the

indirect experimental estimate of As
SL make this scenario very unlikely [26, 61], such that

we will not consider it any further.

Scenario 6: In studying this scenario we aim to enhance mirror fermion contributions

to rare K decays, keeping negligible effects in the experimentally well measured quantities

∆MK and εK . To this purpose we choose the mirror fermion masses as in Scenario 4

(see (9.5)) since the near degeneracy between mH1 and mH2 helps to suppress mirror

fermion effects in ∆MK .

Concerning εK , we recall that with the degeneracy mH1 ≈ mH2 the T-odd contribu-

tions proportional to Im(ξ2) and Re(ξ2) vanish, and only the T-odd term proportional to

Im(ξ3)Re(ξ3) contributes. In Scenario 4 the hierarchical structure of VHd is chosen as to

satisfy Im(ξ3) ' 0. Here in Scenario 6, instead, we suppress mirror fermion effects in εK

due to the second and third generations, by requiring Re(ξ3) = 0. Setting also in this

scenario the phases δd
12 and δd

23 to zero, the explicit expression of the real part reads

Re(ξ3) = −cd
12s

d
12

(

sd
23

2 − cd
23

2
sd
13

2
)

+ (cos δd
13) cd

23s
d
23s

d
13

(

cd
12

2 − sd
12

2
)

, (9.10)

which vanishes for θd
12, θd

23 and θd
13 (chosen in the first quadrant) satisfying

cd
12 = sd

12 =
1√
2

, (9.11)

sd
23 =

sd
13

√

1 + sd
13

2
. (9.12)

We note that while the value of θd
12 is fixed to 45◦ by (9.11), θd

23 and θd
13 have no

specified value nor order of magnitude, but (9.12) implies that only one of them is a free
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parameter. The matrix VHd can then be expressed in terms of the two free parameters θd
13

and δd
13 as

VHd =

















cd
13√
2

cd
13√
2

sd
13e

−iδd
13

− 1
√

2

q

1+sd
13

2
(1 + sd

13
2
eiδd

13) 1
√

2

q

1+sd
13

2
(1 − sd

13
2
eiδd

13)
sd
13

cd
13

q

1+sd
13

2

sd
13√

2

q

1+sd
13

2
(1 − eiδd

13) − sd
13√

2

q

1+sd
13

2
(1 + eiδd

13)
cd
13

q

1+sd
13

2

















(9.13)

Its structure becomes much simpler if the angle θd
13 is sufficiently small, i. e., sd

13 ≤ 0.1, and

reads

VHd ≈









1√
2

1√
2

sd
13e

−iδd
13

− 1√
2

1√
2

sd
13

sd
13√
2
(1 − eiδd

13) − sd
13√
2
(1 + eiδd

13) 1









. (9.14)

As we will see in section 10 the very different structure of VHd when compared with VCKM

implies enhancements in rare K decays, without introducing problematic effects in ∆MK

and εK . Moreover, as VHd in (9.14) has a different structure also from the (9.9) one of

Scenario 4, the new physics effects in the B0
d − B̄0

d and mainly in the B0
s − B̄0

s system, turn

out to be small although visible.

General Scan: As shown in section 10, Scenarios 4 and 6 turn out to be the most

interesting ones with, respectively, large new physics effects in the Bs and K systems.

Such visible enhancements follow from the structure of VHd, primarily required to satisfy

the εK and ∆MK constraints, through Im(ξ3) ≈ 0 in Scenario 4 and through Re(ξ3) = 0

in Scenario 6. A further consequence of the VHd structure is that in Scenario 4 spectacular

effects can be obtained in the Bs system but not in the K system and vice versa in

Scenario 6. An even more interesting picture would be the simultaneous manifestation of

large enhancements in both B and K observables. In order not to miss such a possibility,

in addition to the scenarios described above, we have performed a general scan over mirror

fermion masses and VHd parameters. To have a global view of the most general LHT

effects, we have allowed here the phases δd
12 and δd

23 to differ from zero. Qualitatively their

effect is not significant, although they can help in achieving very large effects in certain

observables. We find that there exist some sets of masses and VHd parameters where the

new physics effects turn out to be spectacular in both B and K systems. We note that

they do not really constitute a scenario, they rather appear in the plots shown in the next

section as isolated (blue) points. In contrast to previous scenarios, in fact, the blue points

corresponding to large new physics effects are quite sensitive to the particular configuration

of mirror fermion masses and VHd parameters.

10. Numerical analysis

10.1 Preliminaries

In our numerical analysis we will set |Vus|, |Vcb| and |Vub| to their central values measured

in tree level decays [62, 63] and collected in table 1.
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|Vub| = 0.00429(29) GF = 1.16637(1) · 10−5 GeV−2

|Vcb| = 0.0416(9) [62] MW = 80.425(38)GeV

λ = |Vus| = 0.225(1) [63] α = 1/127.9

|Vts| = 0.0409(9) [61] sin2 θW = 0.23120(15)

A = 0.822(16) mK0 = 497.65(2)MeV

Rb = 0.447(31) mBd
= 5.2794(5)GeV

β = 26.3(21)◦ mBs
= 5.370(2)GeV

βs = −1.28(7)◦ FK = 160(1)MeV [64]

mc = 1.30(5)GeV FBd
= 189(27)MeV

mt = 163.8(32)GeV FBs
= 230(30)MeV [65]

Table 1: Values of the experimental and theoretical quantities used as input parameters.

As the fourth parameter we will choose the angle γ of the standard unitarity triangle

that to an excellent approximation equals the phase δCKM in the CKM matrix. The angle

γ has been extracted from B → D(∗)K decays without the influence of new physics with

the result [61]

γ = (71 ± 16)◦ , γ = −(109 ± 16)◦ . (10.1)

Only the first solution agrees with the SM analysis of the unitarity triangle, while the

consistency of the second solution with data has been investigated within Scenario 5 in

our previous LHT analysis [26]. It turns out that the combined measurements on Ad
SL

and cos(2β + 2ϕBd
) and the indirect experimental estimate of As

SL make this scenario very

unlikely [26, 61].

We will consider here only the first solution, whose uncertainty is sufficiently large to

allow for significant contributions from new physics. The value of β in table 1 is obtained

from Rb and the first solution of γ, i.e. from tree level decays only and is not affected by

an eventual new physics phase. Its difference from the value of β obtained from the SψKS

asymmetry, β(ψKS) = 21.2 ± 1.0, constitutes the “sin 2β problem” which can be solved

only in Scenarios 3 − 6 [26].

For the non-perturbative parameters entering the analysis of particle-antiparticle mix-

ing we choose and collect in table 1 their lattice averages given in [65], which combine

unquenched results obtained with different lattice actions. Other parameters relevant for

particle-antiparticle mixing can be found in [26].

In order to simplify our numerical analysis we will, as in [26], set all non-perturbative

parameters to their central values and instead we will allow ∆MK , εK , ∆Md, ∆Ms and

SψKS
to differ from their experimental values by ±50%, ±40%, ±40%, ±40% and ±8%,

respectively. In the case of ∆Ms/∆Md we will choose ±20% as the error on the relevant

parameter, ξ, is smaller than in the case of ∆Md and ∆Ms separately. The relevant

expressions are given in [26]. These uncertainties could appear rather conservative, but

we do not want to miss any interesting effect by choosing too optimistic non-perturbative

uncertainties. The constraints from B → Xsγ and B → Xs`
+`− are also taken into account.

They turn out to be easily satisfied, within the present uncertainties, and therefore to have

only a minor impact.
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Figure 5: Xeven/XSM (left) and Yeven/YSM (right) as functions of xL, for various values of f =

1, 1.2, 1.5 and 2 TeV from top to bottom. The bands underlying the curves show the allowed ranges

after applying electroweak precision constraints [23].

In Scenarios 3−6, the parameters f and xL will be fixed to f = 1000GeV and xL = 0.5

in accordance with electroweak precision tests [23]. Varying the breaking scale f would

obviously modify our results. The effect, however, turns out to be much smaller than one

would naively expect from the v2/f2−“scaling”. In other words, lower values of f do not

allow arbitrarily large NP contributions, since the constraints imposed from the available

data become more stringent in this case.

10.2 The MFV scenario 1

Let us consider first the case of totally degenerate mirror fermions. In this case the odd

contributions vanish due to the GIM mechanism [40], the only new particle contributing

is T+ and the LHT model in this limit belongs to the class of MFV models. As only

the T-even sector contributes, the new contributions to all FCNC processes are entirely

dependent on only two parameters

xL , f . (10.2)

Moreover, all the dependence on new physics contributions is encoded in the functions

Xeven = XSM + X̄even , Yeven = YSM + Ȳeven , Zeven = ZSM + Z̄even . (10.3)

There exist strong correlations between various processes that are characteristic for

models with MFV.

It should be emphasized that in this scenario the “sin 2β problem” cannot be solved

as it is a MFV scenario and that ∆Ms ≥ (∆Ms)SM, which is not favored by the CDF

measurement [66], as well as ∆Md ≥ (∆Md)SM. In [67] the relations ∆Ms,d ≥ (∆Ms,d)SM

have been proven to be valid in constrained MFV, where flavour violation is governed

entirely by the Yukawa interactions and there are no new operators beyond the SM ones,

and, therefore, have been expected for this scenario. We specify that in the numerical

analysis of this scenario the SψKS
constraint is left out while the ∆Md,s ones are taken into

account.

In figure 5 we plot Xeven/XSM and Yeven/YSM as functions of xL for various values of f .

We observe that the new physics contributions amount to modifications of the SM functions
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Figure 6: Br(KL → π0νν̄)/Br(KL → π0νν̄)SM (left) and Br(K+ → π+νν̄)/Br(K+ → π+νν̄)SM

(right) in Scenario 1, as functions of xL for different values of f = 1, 1.2, 1.5 and 2 TeV from top

to bottom. The bands underlying the curves show the allowed ranges after applying electroweak

precision constraints [23].

by at most 9% and 14%, respectively, and of the corresponding rare decay branching ratios

by at most 18% and 28%. As an example we show in figure 6 Br(KL → π0νν̄)/Br(KL →
π0νν̄)SM and Br(K+ → π+νν̄)/Br(K+ → π+νν̄)SM as functions of xL for different values

of f . We observe that slightly larger effects can occur in Br(KL → π0νν̄) relative to

Br(K+ → π+νν̄).

10.3 Scenario 2

The new contributions to FCNC processes are in this scenario entirely dependent on only

six parameters

xL , f , mH1 , mH2 , mH3 , mH` , (10.4)

in addition to mt and the CKM parameters that we set to the central values obtained from

tree level decays.

In spite of the fact that in this scenario VHd = VCKM, it does not belong to the class

of MFV models. The point is that breaking the degeneracy of mirror fermion masses

introduces a new source of flavour violation that has nothing to do with the top Yukawa

couplings. Only if accidentally the contributions proportional to ξ
(q)
3 = λ

(q)
t dominate the

new physics contributions, one would again end up with a scenario that effectively looks

like MFV. However, as the mirror spectrum can be generally different from the quark

spectrum and not as hierarchical as the latter one, the terms involving ξ
(q)
2 = λ

(q)
c in

the formulae of the previous sections cannot be neglected, while this can be done in the

T-even contributions. Moreover, as λ
(q)
c are different from λ

(q)
t , that dominate the SM

contributions, even in this simple scenario the usual MFV relations between K, Bd and Bs

systems will be violated.

Specifically, for q = d, s, λ
(q)
c are of the same order of magnitude as λ

(q)
t and the MFV

relations between Bd and Bs systems turn out to be only weakly violated. On the other

hand, λ
(K)
c /λ

(K)
t = O(4 · 102), implying that not only the MFV relations between K and

Bd,s systems are strongly violated, but also the rate Br(K+ → π+νν̄) can be significantly

enhanced in this scenario, relative to the SM and Scenario 1. In Br(K+ → π+νν̄), in
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Figure 7: Br(KL → π0νν̄)/Br(KL → π0νν̄)SM (left) and Br(K+ → π+νν̄)/Br(K+ → π+νν̄)SM

(right) in Scenario 2, as functions of xL, choosing f = 1 TeV and scanning over mirror fermion

masses. The solid line in the right plot represents the SM prediction and separates the regions

where Br(K+ → π+νν̄) is suppressed or enhanced relative to the SM.

fact, the T-odd contribution proportional to Re(λ
(K)
c ) can have a significant effect, since

Re(λ
(K)
c ) is much larger than Im(λ

(K)
t ) and Re(λ

(K)
t ). In Br(KL → π0νν̄), instead, only

the imaginary part of the CKM contributions enters and, since Im(λ
(K)
c ) = −Im(λ

(K)
t ), the

T-odd contribution can only yield a slight suppression.

As an example, we show in figure 7 Br(KL → π0νν̄)/Br(KL → π0νν̄)SM and

Br(K+ → π+νν̄)/Br(K+ → π+νν̄)SM as functions of xL , choosing f = 1TeV and

scanning over mirror fermion masses. We point out that the central values of the SM

predictions appearing in the ratios shown in figure 7 differ from those quoted in (3.13)

and read Br(K+ → π+νν̄) = 8.7 · 10−11, Br(KL → π0νν̄) = 4.1 · 10−11. This difference

comes from the CKM inputs that in the present analysis are taken from tree-level decays

only. We observe that Br(KL → π0νν̄) can be enhanced at most by 17% relative to the

SM prediction, with stronger new physics effects at higher values of the xL parameter. In

Br(K+ → π+νν̄), instead, no clear dependence on the xL parameter can be seen, while

larger (of a factor 5) enhancements as well as suppressions of an order of magnitude can

be obtained.

10.4 Breakdown of the universality

In MFV models the functions Xi, Yi and Zi are independent of the index i = K,d, s. Con-

sequently, they are universal quantities implying strong correlations between observables

in K, Bd and Bs systems. The presence of mirror fermions in the LHT model generally

breaks this universality, as we have already seen in Scenario 2.

In figure 8 we show the ranges allowed in different scenarios in the space (|Xs|, |XK |).
Here and in all the following plots, Scenarios 3, 4 and 6 are represented by red, green

and brown points, respectively, while blue points stand for the general scan. The solid

line represents the MFV relation |Xs| = |XK |, with the black point corresponding to the

SM prediction XSM = 1.49 and the light blue point showing, for illustrative purposes, the

Scenario 1 result. The departure from the solid line gives the size of non-MFV contributions
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Figure 8: Breakdown of the universality between |XK | and |Xs|.

allowed in the various, differently coloured, scenarios. We observe that roughly

1.40 ≤ |Xs| ≤ 1.75 , 0.7 ≤ |XK | ≤ 4.7 , (10.5)

implying that the CP-conserving effects in the K system can be much larger than in the

Bs system. A very similar behavior is found for the functions Yi and Zi with larger effects

in the K system relative to the Bd,s systems. For instance

0.89 ≤ |Ys| ≤ 1.17 , 0.41 ≤ |YK | ≤ 3.9 , (10.6)

to be compared with |Ys| = |YK | = 0.95 in the SM.

In figure 9, then, we show the allowed ranges in the space (Θs
X ,ΘK

X ), which roughly

turn out to be

−3.5◦ ≤ Θs
X ≤ 3.5◦ , −130◦ ≤ ΘK

X ≤ 55◦ , (10.7)

implying that the CP-violating effects in the b → s transitions are tiny, while those in KL

decays can be very large. An analogous pattern is found for the Ys,K and Zs,K functions.

For the absolute values, the ranges in the Bd and Bs systems are similar, while in the Bd

system larger values for the phase (±13◦) can be reached.

From the discussion of the previous plots it is evident that mirror fermion contributions

break universality, and in a scenario-dependent way. Furthermore, we would like to stress

and explain the origin of larger effects found in the K system relative to the Bd,s systems.

Looking at the Xi expression in (3.3) one sees that the mirror fermion contribution is

enhanced by a factor 1/λ
(i)
t . As λ

(K)
t ' 4 · 10−4, whereas λ

(d)
t ' 1 · 10−2 and λ

(s)
t ' 4 · 10−2,

we naively expect the deviation from XSM in the K system to be by more than an order of

magnitude larger than in the Bd system, and even by two orders of magnitude larger than

in the Bs system. Analogous statements are valid for the Yi and Zi functions.
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Figure 10: Br(KL → π0νν̄) as a function of Br(K+ → π+νν̄). The shaded area represents the

experimental 1σ-range for Br(K+ → π+νν̄). The GN-bound is displayed by the dotted line, while

the solid line separates the two areas where Br(KL → π0νν̄) is larger or smaller than Br(K+ →
π+νν̄).

In view of the smallness of the new physics contributions in b → s transitions it is easy

to satisfy the constraints from B → Xsγ and B → Xs`
+`− that turn out to be close to the

SM expectations. Therefore we will not further discuss them.

10.5 The K → πνν̄ system

In figure 10 we show the correlation between Br(K+ → π+νν̄) and Br(KL → π0νν̄)
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Figure 11: Br(KL → π0νν̄)/Br(K+ → π+νν̄) as a function of βK
X , in the general scan and

Scenarios 3, 4 and 6, respectively. The dashed line represents the GN-bound.

for the scenarios in question. The experimental 1σ-range for Br(K+ → π+νν̄) [45] and

the model-independent Grossman-Nir (GN) bound [68] are also shown. We observe that

even for the most general case, there are two branches of possible points. The first one

is parallel to the GN-bound and leads to possible huge enhancements in Br(KL → π0νν̄)

so that values as high as 5 · 10−10 are possible, being at the same time consistent with

the measured value for Br(K+ → π+νν̄). Within Scenario 6 (brown points), this branch

reduces to a straight line. The second branch corresponds to values for Br(KL → π0νν̄)

being rather close to its SM prediction, while Br(K+ → π+νν̄) is allowed to vary in the

range [1 · 10−11, 5 · 10−10], however, values above 4 · 10−10 are experimentally not favored.

We note that within Scenario 4 (green points), Br(KL → π0νν̄) is fixed to the T-even

contribution and close to the SM value, and Br(K+ → π+νν̄) is always smaller than in

the SM so that the GN-bound can be reached.

In figure 11 we show the ratio Br(KL → π0νν̄)/Br(K+ → π+νν̄) as a function of the

phase βK
X , displaying again the GN-bound. We observe that the ratio can be significantly

different from the SM prediction, with a possible enhancement of an order of magnitude.

The two branches of figure 10 can be distinguished also here. In particular, points generated

in Scenario 6 appear only in the left branch and can not reach the GN-bound, while points

belonging to Scenario 4 populate the right branch and approach this bound.

The most interesting implications of this analysis are:

• If Br(K+ → π+νν̄) is found sufficiently above the SM prediction but below 2.3·10−10 ,

basically only two values for Br(KL → π0νν̄) are possible within the LHT model.
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One of these values is very close to the SM value in (3.13) and the second much

larger.

• If Br(K+ → π+νν̄) is found above 2.3 · 10−10, then only Br(KL → π0νν̄) with a

value close to the SM one in (3.13) is possible.

• If Br(K+ → π+νν̄) is found above the SM value, Scenario 4 will be ruled out.

As Scenario 4 was our favorite scenario in the analysis of ∆F = 2 processes in [26], with

spectacular new physics effects in Sψφ and As
SL asymmetries, let us next have a closer look

at the correlations between Sψφ and the K → πνν̄ decays.

10.6 Sψφ and K → πνν̄

In figures 12 and 13 we show the correlation between Sψφ and Br(KL → π0νν̄) and

Br(K+ → π+νν̄), respectively. We observe that in Scenario 4 (green points), in which

Sψφ can be significantly enhanced, Br(KL → π0νν̄) is very close to the SM value, while

Br(K+ → π+νν̄) is suppressed as already found previously. On the other hand in Scenario

6 (brown points), both Br(KL → π0νν̄) and Br(K+ → π+νν̄) can be strongly enhanced,

while Sψφ is very close to the SM value. Only the general scan (blue points) can yield a

simultaneous enhancement of these three observables. In order to see the triple correlation

in question even better for all the scenarios, we show in figure 14 only those points of

figure 10 for which Sψφ ≥ 0.1. It is evident that it is rather difficult to obtain simultaneously

large values of the three observables in question. Still some sets of parameters belonging

to the general scan exist for which this is possible.

10.7 B → Xs,dνν̄

From the discussion of section 10.4 we conclude that the branching ratios for the B →
Xs,dνν̄ decays can be enhanced by at most 35% over the SM predictions. Moreover, we

find that

0.64 ≤
∣

∣

∣

∣

Xd

Xs

∣

∣

∣

∣

2

≤ 1.56 , (10.8)

implying that the MFV relation between the ratio of the branching ratios in question and

the CKM parameters given in (3.25) can be significantly violated.

10.8 Bd,s → µ+µ− versus K → πνν̄

We next investigate possible correlations between Bd,s → µ+µ− and K → πνν̄. In particu-

lar, we show in figure 15 the first correlation that will be accessible to future experiments:

Br(Bs → µ+µ−)/Br(Bs → µ+µ−)SM as a function of Br(K+ → π+νν̄). The experi-

mental 1σ-range for Br(K+ → π+νν̄) [45] is represented by the shaded area and the SM

prediction by the dark point. Br(Bs → µ+µ−) can be about 50% larger than in the SM,

while more pronounced effects are possible in Br(K+ → π+νν̄). Scenarios 4 (green points)

and 6 (brown points) turn out to be again distinguishable through this correlation. As ex-

pected from our previous discussion, Scenario 4 allows larger effects in the Bs system, while

Scenario 6 is characterized by significant (of a factor 5) enhancements in the K system.
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Figure 12: Br(KL → π0νν̄) as a function of Sψφ, in the general scan and Scenarios 3, 4 and 6,

respectively.
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Figure 13: Br(K+ → π+νν̄) as a function of Sψφ. The shaded area represents the experimental

1σ-range for Br(K+ → π+νν̄).

10.9 The KL → π0`+`− system

In figure 16 we show the correlation between Br(KL → π0e+e−) and Br(KL → π0µ+µ−)

that has been first investigated in [53, 54] in the framework of [30]. This correlation is only
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Figure 14: Br(KL → π0νν̄) as a function of Br(K+ → π+νν̄), showing only the points that

satisfy Sψφ ≥ 0.1. Like in figure 10, the shaded area represents the experimental 1σ-range for

Br(K+ → π+νν̄), the GN-bound is displayed by the dotted line, while the solid line separates the

two areas where Br(KL → π0νν̄) is larger or smaller than Br(K+ → π+νν̄).
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Figure 15: Br(Bs → µ+µ−)/Br(Bs → µ+µ−)SM as a function of Br(K+ → π+νν̄). The shaded

area represents the experimental 1σ-range for Br(K+ → π+νν̄) and the dark point shows the SM

prediction.

moderately sensitive to the scenario considered. We observe that both branching ratios

can be enhanced up to a factor two, over the SM values (black point) in (8.11) and (8.12).
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Figure 16: Br(KL → π0µ+µ−) as a function of Br(KL → π0e+e−).
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Figure 17: Br(KL → π0e+e−) (upper curve) and Br(KL → π0µ+µ−) (lower curve) as functions

of Br(KL → π0νν̄). The corresponding SM predictions are represented by dark points.

10.10 KL → π0`+`− versus KL → π0νν̄

In figure 17 we show Br(KL → π0e+e−) and Br(KL → π0µ+µ−) versus Br(KL → π0νν̄).

We observe a strong correlation between KL → π0`+`− and KL → π0νν̄ decays that we ex-

pect to be valid beyond the LHT model, at least in models with the same operators present

as in the SM. We note that a large enhancement of Br(KL → π0νν̄) automatically implies

significant enhancements of Br(KL → π0`+`−) and that different models and their param-
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Figure 18: The ratio r as a function of δd
13.

eter sets can than be distinguished by the position on the correlation curve. Moreover,

measuring Br(KL → π0`+`−) should allow a rather precise prediction of Br(KL → π0νν̄)

at least in models with the same operators as the SM.

10.11 Violation of golden MFV relations

In figure 18 we show the ratio r of (3.20) as a function of δd
13. Its departure from unity

measures the violation of the golden MFV relation between Bd,s → µ+µ− decays and

∆Md,s in (3.20). We observe that r can vary in the range

0.6 ≤ r ≤ 1.7 , (10.9)

with, as expected, Scenario 4 (green points) able to achieve these bounding values more

easily than Scenarios 3 (red points) and 6 (brown points). Such departures from unity

could easily be tested in view of a theoretically clean character of (3.20).

Furthermore, in figure 19 we show the ratio of sin 2βK
X over sin(2β+2ϕBd

) as a function

of δd
13 for the scenarios considered. Similarly to r, the departure of this ratio from unity

measures the violation of a golden MFV relation (3.11), this time between the CP-violating

phases in the K → πνν̄ system and in the B0
d − B̄0

d mixing. As ϕBd
is constrained by the

measured SψKS
asymmetry to be at most a few degrees [33, 61], large violations of the

relation in question can only follow from the K → πνν̄ decays. As seen in figure 19, they

can be spectacular.

10.12 The dependence on δd
13

As seen in figures 18 and 19 there are two oases in the values of δd
13

−10◦ ≤ δd
13 ≤ 50◦, 170◦ ≤ δd

13 ≤ 250◦, (10.10)

with the desert between the two oases visibly but not densely populated. The origin of

the oases is the constraint from SψKS
. It is interesting to observe again a clear separation
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Figure 19: sin 2βK
X / sin(2β + 2ϕBd

) as a function of δd
13.

between Scenarios 4 and 6. While in Scenario 4 (green points) the first oasis is dominantly

populated, in Scenario 6 (brown points) the second oasis is occupied. Moreover in the

latter case there is an interesting excursion of points into the desert up to δd
13 = 290◦. The

desert, instead, in which large effects simultaneously in K and B systems can be found,

is dominated by red and blue points corresponding to Scenario 3 and the general scan,

respectively.

10.13 Comparison of various scenarios

The plots in figures 10–19 are self-explanatory. Yet, we would like to make a few general

observations:

• There is a very clear distinction between scenarios 4 and 6. Scenario 4 can be con-

sidered as “Bs-scenario” as it gives interesting effects in the Bs system.

• On the other hand Scenario 6 can be considered as “K-scenario” as it admits spec-

tacular effects in K decays.

• Moreover, for certain sets of the LHT parameters obtained in the general scan, large

departures from the SM predictions in K and Bd,s decays can be simultaneously

found.

10.14 B → πK decays in the LHT model

We have finally investigated the impact of new physics contributions on B → πK decays

that, for some time, signaled the presence of enhanced electroweak penguin contributions

with new large CP-violating phases. In a simple new physics scenario in which the univer-

sality between bs̄-penguins relevant for B → πK and sd̄-penguins relevant for K → πνν̄

has been assumed [30], the enhanced electroweak penguins required to fit the B → πK data

implied spectacular effects in the K → πνν̄ system, similar to those shown in figures 10–12.
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Meanwhile, the data on B → πK decays significantly changed [69 – 71] so that the

SM predictions for the so-called Rn and Rc ratios [30] are nowadays within one standard

deviations from the data. Consequently, within the new physics scenario of [30] no large

effects in K → πνν̄ are expected.

The picture is quite different in the LHT model, where the universality between bs̄

and sd̄ systems can be strongly broken. Following the approach of [30] to determine the

hadronic parameters of the B → πK system from the B → ππ data and calculating the

electroweak penguin contributions to B → πK decays in the LHT model, we find that

the new physics effects in these rare decays are smaller than the theoretical uncertainties

present in non-leptonic decays. These small effects follow primarily from the smallness of

complex phases in the bs̄ penguins as given in (10.7) to be compared with ±90◦ taken in

past B → πK analyses.

In summary, in the LHT model the smallness of new physics in B → πK decays does

not imply its smallness in K → πνν̄ decays as seen in figures 10–14.

10.15 What if the sin 2β problem disappears?

Until now, our analysis was based on the tree level determination of the angle β that, due

to the high value of Rb, is larger than the one measured through the SψKS
asymmetry. It

is conceivable that future tree level determinations of Rb will yield lower values for Rb and

consequently for β, so that the sin 2β problem will disappear. We have repeated the whole

analysis for such a scenario, finding that the sin 2β problem has a very minor impact on

our analysis, in particular in Bs and K decays. For instance, large effects in K → πνν̄

decays and simultaneously in Sψφ can still be found.

10.16 What if the Bd and Bs decays are SM-like?

Finally, we can consider a very pessimistic scenario where BaBar, Belle and LHC will

confirm all the SM expectations in Bd and Bs decays, finding in particular both the SψKS

and Sψφ asymmetries very close to the SM values. This could already happen at the end

of this decade. The question then arises whether in such a situation we could still expect

large departures from the SM values in rare K decays, whose precise measurements will

be available only in the next decade. It is evident from figures 10–14 that even in this,

pessimistic for B-physics, scenario, spectacular effects in K → πνν̄ and also large effects

in KL → π0`+`− will be possible in particular in Scenario 6.

11. Summary and outlook

In this paper we have analyzed for the first time rare K and B decays in the Littlest Higgs

model with T-parity [7 – 9, 22]. Together with our previous work [26] on observables related

to particle-antiparticle mixing and B → Xs,dγ, the results of the present paper allow us to

obtain a general description of FCNC processes in this model.

On the technical side, we have presented a complete set of Feynman rules for the LHT

model including also vertices with Goldstone bosons. The inclusion of O(v2/f2) corrections

to some of the vertices has been performed here for the first time. These Feynman rules
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allow the calculations of O(v2/f2) contributions in arbitrary gauge and should turn out to

be useful also for other observables.

Using these rules we have calculated in the LHT model the short distance functions

Xi, Yi and Zi (i = K,d, s). In the LHT model these functions are complex quantities and

carry the index i to signal the breakdown of the universality of FCNC processes, valid in

the SM. The new weak phases in Xi, Yi and Zi, which are absent in the SM and models

with MFV, imply potential new CP-violating effects beyond the SM ones. We would like to

emphasize that the new parameterization of rare decays in terms of non-universal functions

Xi, Yi and Zi can be applied to any model with new flavour and CP-violating interactions

but the same low energy operators.

With the functions Xi, Yi and Zi at hand, one can straightforwardly calculate the

branching ratios for a number of interesting rare decays. In particular, we analyzed K+ →
π+νν̄, KL → π0νν̄, Bs,d → µ+µ−, B → Xs,dνν̄, B → Xs`

+`−, KL → π0`+`− and

B → πK. At all stages of our numerical analysis we took into account the existing

constraints from electroweak precision studies [23] and from particle-antiparticle mixing

and B → Xsγ studied by us in [26] and from B → Xs`
+`− calculated here.

The main messages of our paper are as follows:

• The most evident departures from the SM predictions are found for CP-violating

observables that are strongly suppressed within this model. These are the branching

ratio for KL → π0νν̄ and the CP-asymmetry Sψφ.

• Large departures from SM expectations are also possible for Br(KL → π0`+`−) and

Br(K+ → π+νν̄).

• The branching ratios for Bs,d → µ+µ− and B → Xs,dνν̄, instead, are modified by

at most 50% and 35%, respectively, and the effects of new electroweak penguins in

B → πK are small, in agreement with the recent data.

• Sizable departures from MFV relations between ∆Ms,d and Br(Bs,d → µ+µ−) and

between SψKS
and the K → πνν̄ decay rates are possible.

• The universality of new physics effects, characteristic for MFV models, can be largely

broken, in particular between K and Bs,d systems.

• The new physics effects in B → Xs,dγ and B → Xs,d`
+`− turn out to be below 5%

and 15%, respectively so that agreement with the data can easily be obtained.

One of the important findings of our paper is the presence of left-over singularities in

the mirror sector that signals some sensitivity of the final results to the UV completion

of the theory. This issue has been discussed in detail in the context of the LH model

without T-parity in [21], is known from the study of electroweak constraints [22] and has

been considered in section 6 of the present paper. In estimating the contribution of these

logarithmic singularities, we have assumed the UV completion of the theory not to have

a complicated flavour pattern or at least that it has no impact below the cut-off. Clearly,

this additional assumption lowers the predictive power of the theory. In spite of that, we
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believe that the general picture of FCNC processes presented here and in our previous

paper is only insignificantly shadowed by this general property of non-linear sigma models.

We conclude with probably one of the most important messages of this paper and of

our previous analysis:

• In spite of an impressive agreement of the SM with the available data, large departures

from the SM expectations in Bs decays are still possible. However, even if future

Tevatron and LHC data would not see any significant new physics effect in these

decays, this will not imply necessarily that new physics is not visible in KL → π0νν̄,

K+ → π+νν̄ and KL → π0`+`−. On the contrary, as seen in the case of Scenario 6,

large departures in these three decays will still be possible. It may then be that in the

end, it will be K physics and not B physics that will offer the best information about

the new phenomena at very short distance scales, in accordance with the arguments

in [72, 73].
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A. Non-leading contributions of Φ

In this appendix we show that the scalar triplet Φ does not contribute to the decays

considered in the present paper at O(v2/f2).

In principle, also the scalar triplet Φ could contribute to the decays considered in the

present analysis. The corresponding diagrams can be obtained from the ones shown in

figures 1 and 2 by simply replacing W±
H by φ± and ZH , AH by φ0, φP . Therefore we

also derived the Feynman rules for the vertices containing Φ. We found them to have the

following generic structure:

q̄HΦq ∼ c
mq

H

MΦ

v2

f2
PL − c′

mq

MΦ
PR , ΦGHGL ∼ O

(

v2

f

)

, (A.1)

where c, c′ are O(1) coefficients depending on which qH , q and component of Φ are involved,

and PR,L = (1± γ5)/2 are the usual projectors. qH and q denote mirror and SM fermions,

respectively, and GH , GL are heavy and light gauge bosons.

As we have set the masses of the external quarks and leptons to zero throughout our

analysis, we obtain

q̄HΦq ∼ O
(

v2

f2

)

and ΦGHGL ∼ O
(

v2

f

)

. (A.2)

It can now be easily seen that each diagram contains at least two such vertices, so that

they are suppressed by O(v4/f4).
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q1 (1/30, 2/15) q2 (2/15, 1/30)

t′1 (8/15, 2/15) t′2 (2/15, 8/15)

t′1R (8/15, 2/15) t′2R (2/15, 8/15)

uR (1/3, 1/3) dR (−1/6,−1/6)

`1 (−1/5,−3/10) `2 (−3/10,−1/5)

eR (−1/2,−1/2)

Table 2: U(1)1 × U(1)2 quantum numbers of the fermion fields.

Furthermore, in contrast to the LH model without T-parity, all particles running in

the loops have O(f) masses, so that no cancellation of v/f factors due to large mass ratios,

as encountered in [19, 21] for diagrams with T+ exchanges, can appear.

Thus we find that Φ contributes to the decays in question – and more in general to all

decays with external SM fermions — only at O(v4/f4). For this reason we do not give any

Feynman rule for the interactions of the scalar triplet Φ.

B. Relevant Feynman rules

In this appendix we list all Feynman rules relevant for the analysis performed in the present

paper, and describe briefly how they have been derived. We note that given the Feynman

rule for a vertex, the rule for the conjugate one can be obtained through the replacement

(vertex)→ −(vertex)†. There follow, in particular, the prescriptions PL → −PR, PR →
−PL and γµPL,R → γµPL,R. A similar, but more detailed description for the LH model

without T-parity can be found in [10] and in [17, 21], where some of the Feynman rules

given in [10] have been corrected.

B.1 Fermion-Gauge boson couplings

The fermion-gauge boson couplings can easily be obtained from the fermion kinetic

term [34]

Lfermion = Ψ̄1σ̄
µD1

µΨ1 + Ψ̄2σ̄
µD2

µΨ2 + t̄′1σ̄
µD′1

µ t′1 + t̄′2σ̄
µD′2

µ t′2 , (B.1)

where

D1
µ = ∂µ −

√
2igQa

1W
a
1µ −

√
2ig′Y

(Ψ1)
1 B1µ −

√
2ig′Y

(Ψ1)
2 B2µ , (B.2)

D2
µ = ∂µ +

√
2igQaT

2 W a
2µ −

√
2ig′Y (Ψ2)

1 B1µ −
√

2ig′Y (Ψ2)
2 B2µ , (B.3)

D′i
µ = ∂µ −

√
2ig′Y

(t′i)
1 B1µ −

√
2ig′Y

(t′i)
2 B2µ , (B.4)

by inserting the mass eigenstates of all particles involved. The U(1) charges can be obtained

from gauge invariance of the Yukawa couplings and T-parity [34] and are given in table 2.

Similar kinetic terms can be written down for the right-handed SM fields and for

t′iR, i = 1, 2.

The kinetic term for the right-handed mirror fermions can be written down by using

the CCWZ approach [24, 74] and is given in explicit terms in [34]. As the mirror fermions

are purely vector-like under SU(2)L × U(1)Y , their couplings to SM gauge bosons are
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Fermion couplings to SM gauge bosons

f̄ALf ieQfγµ

ūiZLui ig
cos θW

γµ
[(

1
2 − 2

3 sin2 θW

)

PL − 2
3 sin2 θW PR

]

d̄iZLdi ig
cos θW

γµ
[(

−1
2 + 1

3 sin2 θW

)

PL + 1
3 sin2 θW PR

]

t̄ZLt ig
cos θW

γµ
[(

1
2

(

1 − x2
L

v2

f2

)

− 2
3 sin2 θW

)

PL − 2
3 sin2 θW PR

]

T̄+ZLT+
ig

cos θW
γµ

[(

1
2x2

L
v2

f2 − 2
3 sin2 θW

)

PL − 2
3 sin2 θW PR

]

T̄+ZLt ig
cos θW

xL

2
v
f

[

1 + v2

f2

(

d2 − x2
L

2

)]

γµPL

ūi
HZLui

H
ig

cos θW

[(

1
2 − 2

3 sin2 θW

)]

γµ

d̄i
HZLdi

H
ig

cos θW

[(

−1
2 + 1

3 sin2 θW

)]

γµ

T̄−ZLT− − 2ig
3 cos θW

sin2 θW γµ

ūiW+µ
L dj ig√

2
(VCKM)ijγ

µPL

t̄W+µ
L dj ig√

2
(VCKM)tj

(

1 − x2
L

2
v2

f2

)

γµPL

T̄+W+µ
L dj ig√

2
(VCKM)tjxL

v
f

(

1 + v2

f2 d2

)

γµPL

ūi
HW+µ

L dj
H

ig√
2
δijγ

µ

ν̄iZLνi ig
2 cos θW

γµPL

¯̀iZL`i ig
cos θW

γµ
[(

−1
2 + sin2 θW

)

PL + sin2 θW PR

]

ν̄i
HZLνi

H
ig

2 cos θW
γµ

¯̀i
HZL`i

H
ig

cos θW

[(

−1
2 + sin2 θW

)]

γµ

ν̄iW+µ
L `j ig√

2
(V †

PMNS)ijγ
µPL

ν̄i
HW+µ

L `j
H

ig√
2
δijγ

µ

proportional to γµ. Thus there is no need to consider the CCWZ kinetic term any further,

as the couplings of the right-handed mirror fermions to SM gauge bosons have to be equal

to the ones of the left-handed mirror fermions.

The couplings to the heavy gauge bosons have already been given in [25]. We confirm

the findings of these authors, and include also v2/f2 corrections to the couplings of the

neutral gauge bosons. These corrections turn out to be irrelevant in the decays considered in

the present paper, but could be of relevance for other processes. While our paper was being

completed, the rules for the quark sector appeared also in [35], but without performing the

v/f− expansion and without taking into account the flavour mixing matrices VHu and VHd.

Note that the couplings to the heavy gauge bosons are purely left-handed as there is

no kinetic term including both heavy and light right-handed fermions. The only exception

are the couplings involving T− together with T+ or t.
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Fermion couplings to heavy gauge bosons

ūi
HAHuj

(

− ig′

10 − ig
2 xH

v2

f2

)

(VHu)ijγ
µPL

ūi
HZHuj

(

ig
2 − ig′

10 xH
v2

f2

)

(VHu)ijγ
µPL

d̄i
HAHdj

(

− ig′

10 + ig
2 xH

v2

f2

)

(VHd)ijγ
µPL

d̄i
HZHdj

(

− ig
2 − ig′

10 xH
v2

f2

)

(VHd)ijγ
µPL

ūi
HAHt

[

− ig′

10 +
(

ig′

20 x2
L − ig

2 xH

)

v2

f2

]

(VHu)i3γ
µPL

ūi
HZHt

[

ig
2 −

(

ig
4 x2

L + ig′

10 xH

)

v2

f2

]

(VHu)i3γ
µPL

ūi
HAHT+ − ig′

10 xL
v
f (VHu)i3γ

µPL

ūi
HZHT+

ig
2 xL

v
f (VHu)i3γ

µPL

T̄−AH t −2
5 ig′γµ

(

xL
v
f PL +

√
xL

(

1 − v2

f2 (1 − xL)(1
2 − xL)

)

PR

)

T̄−ZHt −2
5 ig′xH

√
xL

v2

f2 γµPR

T̄−AHT+
2
5 ig′γµ

[(

1 − x2
L

2
v2

f2

)

PL +
√

1 − xL

(

1 + v2

f2 xL(1
2 − xL)

)

PR

]

T̄−ZHT+
2
5 ig′xH

v2

f2 γµ(PL +
√

1 − xLPR)

ūi
HW+µ

H dj ig√
2
(VHd)ijγ

µPL

d̄i
HW−µ

H uj ig√
2
(VHu)ijγ

µPL

d̄i
HW−µ

H t ig√
2
(VHu)i3

(

1 − x2
L

2
v2

f2

)

γµPL

d̄i
HW−µ

H T+
ig√
2
(VHu)i3xL

v
f γµPL

ν̄i
HAHνj

(

ig′

10 − ig
2 xH

v2

f2

)

(VHν)ijγ
µPL

ν̄i
HZHνj

(

ig
2 + ig′

10 xH
v2

f2

)

(VHν)ijγ
µPL

¯̀i
HAH`j

(

ig′

10 + ig
2 xH

v2

f2

)

(VH`)ijγ
µPL

¯̀i
HZH`j

(

− ig
2 + ig′

10 xH
v2

f2

)

(VH`)ijγ
µPL

ν̄i
HW+µ

H `j ig√
2
(VH`)ijγ

µPL

¯̀i
HW−µ

H νj ig√
2
(VHν)ijγ

µPL

B.2 Fermion-Goldstone boson couplings

The fermion couplings to T-even and T-odd Goldstone bosons can be derived from the

Yukawa interactions (2.23), (2.38) and (2.40) and from the mass term (2.20). Note

that (2.40) with X = (Σ33)
−1/4 corresponds to case A in [36]. Using instead X = (Σ†

33)
1/4

(case B in [36]) does not modify the fermion couplings to Goldstone bosons as required by

gauge invariance.

As these terms have again to be expressed in mass eigenstates of the particles involved,

we have to take into account the O(v2/f2) mixing of the Goldstone bosons and scalars [23].
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Following the steps of [23], we find the mass eigenstates, denoted here with a subscript “m”,

to be

π0
m = π0

(

1 − v2

12f2

)

, (B.5)

π±
m = π±

(

1 − v2

12f2

)

, (B.6)

hm = h , (B.7)

φ0
m = φ0

(

1 − v2

12f2

)

, (B.8)

φP
m = φP −

(√
10η −

√
2ω0 + φP

) v2

12f2
, (B.9)

φ±
m = φ±

(

1 − v2

24f2

)

∓ iω± v2

12f2
, (B.10)

φ++
m = φ++ , (B.11)

ηm = η − 5g′η − 4
√

5[g′(ω0 +
√

2φP ) − 6gxHω0]

24g′
v2

f2
, (B.12)

ω0
m = ω0 − 5g(ω0 + 4

√
2φP ) − 4

√
5η(5g + 6g′xH)

120g

v2

f2
, (B.13)

ω±
m = ω±

(

1 − v2

24f2

)

∓ i

6
φ± v2

f2
. (B.14)

In what follows, we will drop the subscript “m”, as it is clear that all Feynman rules are

given in terms of mass eigenstates.

Note that the mixing of Goldstone bosons and scalars in question affect the corre-

sponding Feynman rules at O(v2/f2), thus without considering it, one would not be able

to get the right O(v2/f2) corrections. Also the O(v2/f2) corrections to the particle masses

have to be taken into account.

We would like to caution the reader that this mixing has not been taken into account

in the derivation of the Feynman rules for Φ given in [34].

The leading order contributions to the couplings of fermions to the heavy Goldstone

bosons have already been given in [25]. We included also O(v2/f2) corrections, necessary

for the calculation of rare decays, and the contributions proportional to the SM fermion

masses. We note that our Feynman rules for these vertices differ by sign from the ones

given in [25], as our sign conventions for the mass and Yukawa terms (2.20), (2.23), (2.38)

and (2.40) are chosen such that we obtain positive and real-valued masses, as also done

in [36].

B.3 Triple gauge boson couplings

The self-interactions of the gauge bosons can be obtained, as usual, from the gauge boson

kinetic term

Lgauge = −1

2
Tr(F 1

µνF 1µν) − 1

2
Tr(F 2

µνF 2µν) − 1

4
B1

µνB
1µν − 1

4
B2

µνB2µν (B.15)
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Fermion couplings to SM Goldstone bosons

ūiπ+dj g√
2MWL

(

mi
uPL − mj

dPR

)

(VCKM)ij

t̄π+dj g√
2MWL

(

1 − x2
L

2
v2

f2

) (

mtPL − mj
dPR

)

(VCKM)tj

T̄+π+dj gxL√
2MWL

v
f

[

mT+

(

1 + v2

f2 d2

)

PL − mj
dPR

]

(VCKM)tj

ūiπ0uj − gmi
u

2MZL
cos θW

γ5δij

t̄π0t − gmt

2MZL
cos θW

(

1 − x2
L

v2

f2

)

γ5

T̄+π0T+ − gmT+

2MZL
cos θW

x2
L

v2

f2 γ5

T̄+π0t gxL

2MZL
cos θW

v
f

[

mT+

(

1 + v2

f2

(

d2 − x2
L

2

))

PL − mtPR

]

d̄iπ0dj gmi
d

2MZL
cos θW

γ5δij

ūi
Hπ+dj

H − g

8
√

2MWL

v2

f2 md
Hiδij

ν̄iπ+`j g√
2MWL

(

mi
νPL − mj

`PR

)

(V †
PMNS)ij

ν̄iπ0νj − gmi
ν

2MZL
cos θW

γ5δij

¯̀iπ0`j gmi
`

2MZL
cos θW

γ5δij

ν̄i
Hπ+`j

H − g

8
√

2MWL

v2

f2 m`
Hiδij

by inserting the mass eigenstates of the gauge boson fields. Here, F i
µν and Bi

µν denote the

field strength tensors of the gauge groups SU(2)i and U(1)i (i = 1, 2), respectively.

The momenta k, p and q are defined to be incoming.

B.4 Triple gauge boson-Goldstone boson couplings

The kinetic term for the non-linear sigma model field Σ is given by

L =
f2

8
Tr

[

(DµΣ)† (DµΣ)
]

, (B.16)

where the covariant derivative is defined through

DµΣ = ∂µΣ −
√

2i

2
∑

j=1

[

gW a
jµ

(

Qa
j Σ + ΣQaT

j

)

+ g′Bjµ

(

YjΣ + ΣY T
j

)]

. (B.17)

From this term the interactions of the Goldstone boson fields with the SM and heavy gauge

bosons can be obtained. The mixing of the Goldstone boson and scalar fields, as described

in appendix B.2, has also to be taken into account.

All momenta are again defined to be incoming.

C. Relevant functions

In this appendix we list the functions that entered the present study of rare and CP-

violating K and B decays. Both the SM contributions and the new physics contributions
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Fermion couplings to heavy Goldstone bosons

ūi
Hω+dj g√

2MWH

(

mu
HiPL − mj

dPR

)

(VHd)ij

ūi
Hω0uj g

2MZH

[

mu
Hi

(

1 + v2

f2

(

1
8 − xH

tan θW

))

PL − mj
uPR

]

(VHu)ij

ūi
Hω0t g

2MZH

[

mu
Hi

(

1 + v2

f2

(

1
8 − xH

tan θW
− x2

L

2

))

PL − mtPR

]

(VHu)i3

ūi
Hω0T+

gxL

2MZH

v
f

(

mu
HiPL − mT+

PR

)

(VHu)i3

T̄−ω0t gmtv
2MZH

f PR

T̄−ω0T+
gmT+

v2

2MZH
f2

(

1 − 4xH

tan θW

)

PR

ūi
Hηuj − g′

10MAH

[

mu
Hi

(

1 + v2

f2

(

5
8 + xH tan θW

)

)

PL − mj
uPR

]

(VHu)ij

ūi
Hηt − g′

10MAH

[

mu
Hi

(

1 + v2

f2

(

5
8 + xH tan θW − x2

L

2

))

PL − mtPR

]

(VHu)i3

ūi
HηT+ − g′xL

10MAH

v
f

(

mu
HiPL − mT+

PR

)

(VHu)i3

T̄−ηt − 2g′mt

5MAH

f
v

(

1 − v2

f2

(

x2
L

2 + 1
6

))

PR

T̄−ηT+ −2g′xLmT+

5MAH

(

1 − v2

f2

(

3
2x2

L − 2xL + 1
)

)

PR

d̄i
Hω−uj g√

2MWH

[

md
Hi

(

1 − v2

8f2

)

PL − mj
uPR

]

(VHu)ij

d̄i
Hω−t g√

2MWH

[

md
Hi

(

1 − v2

f2

(

1
8 +

x2
L

2

))

PL − mtPR

]

(VHu)i3

d̄i
Hω−T+

g√
2MWH

xL
v
f

(

md
HiPL − mT+

PR

)

(VHu)i3

d̄i
Hω0dj − g

2MZH

[

md
Hi

(

1 + v2

f2

(

−1
4 + xH

tan θW

))

PL − mj
dPR

]

(VHd)ij

d̄i
Hηdj − g′

10MAH

[

md
Hi

(

1 − v2

f2

(

5
4 + xH tan θW

)

)

PL − mj
dPR

]

(VHd)ij

ν̄i
Hω+`j g√

2MWH

(

mν
HiPL − mj

`PR

)

(VH`)ij

ν̄i
Hω0νj g

2MZH

[

mν
Hi

(

1 + v2

f2

(

1
8 − xH

tan θW

))

PL − mj
νPR

]

(VHν)ij

ν̄i
Hηνj − g′

10MAH

[

mν
Hi

(

1 + v2

f2

(

5
8 + xH tan θW

)

)

PL − mj
νPR

]

(VHν)ij

¯̀i
Hω−νj g√

2MWH

[

m`
Hi

(

1 − v2

8f2

)

PL − mj
νPR

]

(VHν)ij

¯̀i
Hω0`j − g

2MZH

[

m`
Hi

(

1 + v2

f2

(

−1
4 + xH

tan θW

))

PL − mj
`PR

]

(VH`)ij

¯̀i
Hη`j − g′

10MAH

[

m`
Hi

(

1 − v2

f2

(

5
4 + xH tan θW

)

)

PL − mj
`PR

]

(VH`)ij

coming from the T-even and T-odd sectors are collected. The variables are defined as

follows:

xq =
m2

q

M2
WL

, xT =
m2

T+

M2
WL

(q = c, t) , (C.1)

zi =
m2

Hi

M2
WH

, z′i =
m2

Hi

M2
AH

= zi a with a =
5

tan2 θW
, (i = 1, 2, 3) , (C.2)
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Gauge boson self-interactions

W+µ
L (k)W−ν

L (p)Zρ
L(q) ig cos θW [gµν(k − p)ρ + gνρ(p − q)µ + gρµ(q − k)ν ]

W+µ
L (k)W−ν

L (p)Aρ
L(q) ie [gµν(k − p)ρ + gνρ(p − q)µ + gρµ(q − k)ν ]

W+µ
H (k)W−ν

L (p)Zρ
H(q) ig [gµν(k − p)ρ + gνρ(p − q)µ + gρµ(q − k)ν ]

W+µ
H (k)W−ν

L (p)Aρ
H(q) igxH

v2

f2 [gµν(k − p)ρ + gνρ(p − q)µ + gρµ(q − k)ν ]

W+µ
H (k)W−ν

H (p)Zρ
L(q) ig cos θW [gµν(k − p)ρ + gνρ(p − q)µ + gρµ(q − k)ν ]

W+µ
H (k)W−ν

H (p)Aρ
L(q) ie [gµν(k − p)ρ + gνρ(p − q)µ + gρµ(q − k)ν ]

Gauge boson-Goldstone boson interactions

W+µ
L W−ν

H η g
4MAH

(

5
tan θW

+ 4xH

)

v2

f2 gµν

W+µ
L W−ν

H ω0 −gMZH

(

1 − v2

4f2

)

gµν

W+µ
H Zν

Lω− −gMWH
cos θW

(

1 − v2

4f2 cos2 θW

)

gµν

W+µ
H Aν

Lω− −eMWH
gµν

W+µ
L Zν

Hω− gMWH

(

1 − v2

4f2

)

gµν

W+µ
L Aν

Hω− gMWH
v2

f2

(

tan θW

4 − xH

)

gµν

W+µ
L Zν

Lπ− gMWL

sin2 θW

cos θW
gµν

W+µ
L Aν

Lπ− −eMWL
gµν

W+µ
H Aν

Hπ− g′MWL
gµν

ω+(p)ω−(q)ZL ig cos θW

(

1 − v2

8f2 cos2 θW

)

(p − q)µ

ω+(p)ω−(q)AL ie (p − q)µ

π+(p)π−(q)ZL
ig(1−2 sin2 θW )

2 cos θW
(p − q)µ

π+(p)π−(q)AL ie (p − q)µ

ω+(p)π−(q)AH −ig′v
3f (p − q)µ

ω+(p)ω0(q)W−µ
L −ig

(

1 − v2

8f2

)

(p − q)µ

ω+(p)η(q)W−µ
L i25g+24g′xH

24
√

5
v2

f2 (p − q)µ

π+(p)ω0(q)W−µ
H −ig

2
v
f (p − q)µ

π+(p)η(q)W−µ
H −i

√
5g
6

v
f (p − q)µ

π+(p)π0(q)W−µ
L −ig

2 (p − q)µ
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y =
m2

H`

M2
WH

=
m2

H`

M2
ZH

, y′ = ya , η =
1

a
. (C.3)

XSM(xt) =
xt

8

[

xt + 2

xt − 1
+

3xt − 6

(xt − 1)2
log xt

]

, (C.4)

YSM(xt) =
xt

8

[

xt − 4

xt − 1
+

3xt

(xt − 1)2
log xt

]

, (C.5)

ZSM(xt) = −1

9
log xt +

18x4
t − 163x3

t + 259x2
t − 108xt

144(xt − 1)3

+
32x4

t − 38x3
t − 15x2

t + 18xt

72(xt − 1)4
log xt . (C.6)

C0(y) =
y

8

[

y − 6

y − 1
+

3y + 2

(y − 1)2
log y

]

, (C.7)

D0(y) = −4

9
log y +

−19y3 + 25y2

36(y − 1)3
+

y2(5y2 − 2y − 6)

18(y − 1)4
log y , (C.8)

E0(y) = −2

3
log y +

y2(15 − 16y + 4y2)

6(y − 1)4
log y +

y(18 − 11y − y2)

12(1 − y)3
, (C.9)

D′
0(y) = −(3y3 − 2y2)

2(y − 1)4
log y +

(8y3 + 5y2 − 7y)

12(y − 1)3
, (C.10)

E′
0(y) =

3y2

2(y − 1)4
log y +

(y3 − 5y2 − 2y)

4(y − 1)3
. (C.11)

U3(xt, xT ) =
−3 + 2xt − 2x2

t

8(−1 + xt)
− xt

(

−4 − xt + 2x2
t

)

log xt

8(−1 + xt)2
+

(3 + 2xt) log xT

8
, (C.12)

V3(xt, xT ) =

(

3 + 2xt − 2x2
t

)

8(−1 + xt)
− xt

(

2 − xt + 2x2
t

)

log xt

8(−1 + xt)2
+

(3 + 2xt) log xT

8
. (C.13)

(D′)SM = D′
0(xt) , (C.14)

(D′)LHT = (D′)even +
1

λ
(s)
t

T odd
D′ , (C.15)

(D′)even = D′
0(xt) +

v2

f2
x2

L

[

D′
0(xT ) − D′

0(xt)
]

, (C.16)

T odd
D′ =

1

4

v2

f2

[

ξ
(s)
2

(

D′
odd(z2) − D′

odd(z1)
)

+ ξ
(s)
3

(

D′
odd(z3) − D′

odd(z1)
)

]

, (C.17)

D′
odd(zi) = D′

0(zi) −
1

6
E′

0(zi) −
1

30
E′

0(z
′
i) , (C.18)

R2(zi) = −
[

zi log zi

(1 − zi)2
+

1

1 − zi

]

, (C.19)
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F2(zi) = −1

2

[

z2
i log zi

(1 − zi)2
+

1

1 − zi

]

. (C.20)

F νν̄ (zi, y;WH) =
3

2
zi − F5 (zi, y) − 7F6 (zi, y) − 9U (zi, y) , (C.21)

Fµµ̄ (zi, y;WH) =
3

2
zi − F5 (zi, y) − 7F6 (zi, y) + 3U (zi, y) . (C.22)

F5 (zi, y) =
z3
i log zi

(1 − zi) (y − zi)
+

y3 log y

(1 − y) (zi − y)
, (C.23)

F6 (zi, y) = −
[

z2
i log zi

(1 − zi) (y − zi)
+

y2 log y

(1 − y) (zi − y)

]

, (C.24)

U (zi, y) =
z2
i log zi

(zi − y) (1 − zi)
2 +

y2 log y

(y − zi) (1 − y)2
+

1

(1 − zi) (1 − y)
. (C.25)

G (zi, y;ZH) = −3

4
U (z, y) , (C.26)

G1

(

z′i, y
′
i;AH

)

=
1

25a
G

(

z′i, y
′
i;ZH

)

, (C.27)

G2 (zi, y; η) = − 3

10a

[

z2
i log zi

(1 − zi) (η − zi) (zi − y)

+
y2 log y

(1 − y) (η − y) (y − zi)
+

η2 log η

(1 − η) (zi − η) (η − y)

]

. (C.28)
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